
www.manaraa.com

www.manaraa.com

COMPUTER AIDED
SOFTWARE ENGINEERING

edited by

Hausi Muller
University of Victoria

Ronald J. Norman
San Diego State University

Jacob Slonim
IBM Canada, Ltd.

A Special Issue of
AUTOMATED SOFTWARE ENGINEERING

An International Journal
Volume 3, Nos. 3/4 (1996)

KLUWER ACADEMIC PUBLISHERS
Boston / Dordrecht / London

www.manaraa.com

AUTOMATED
SOFTWARE

ENGINEERING

An International Journal

Volume 3, Nos. 3/4, August 1996

Special Issue: Computer Aided Software Engineering
Guest Editors: Hausi A. Muller, Ronald J. Norman and Jacob Sionim

Introduction Hausi A. Muller, Ronald J. Norman and Jacob Slonim 5

Automating the Software Inspection Process
Fraser MacDonald, James Miller, Andrew Brooks, Marc Roper and Murray Wood 9

Design by Framework Completion. .. Dipayan Gangopadhyay and Sub rata Mitra 35

Building an Organization-Specific Infrastructure to SlOpport CASE Tools
· ... Scott Henninger 55

A CASE Tool for Software Architecture Design
· ... Keng Ng, Jeff Kramer and Jeff Magee 77

A Knowledge-Based Software Engineering Environment for Reusable Software
Requirements and Architectures .. .
.... H. Gomaa, L. Kerschberg, V.Sugumaran, C. Bosch, l. Tavakoli and L. O'Hara 101
-------------------------~ .. ,,------
Enveloping Sophisticated Tools into Process-Centered Environments
· .. Giuseppe Valetto and Gail E. Kaiser 125

Use of Methods and CASE-Tools in Norway: Results from a Survey
.......... John Krogstie 163

A Debugging and Testing Tool for Supporting Software Evolution
.. D. Abramson and R. Sosic 185

Desert Island Column ... Kevin Ryan 207

www.manaraa.com

Distributors for North America:
Kluwer Academic Publishers
101 Philip Drive
Assinippi Park
Norwell, Massachusetts 02061 USA

Distributors for all other countries:
Kluwer Academic Publishers Group
Distribution Centre
Post Office Box 322
3300 AH Dordrecht, THE NETHERLANDS

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available
from the Library of Congress.

ISBN-13: 978-1-4612-8626-4
DOl: 10.1007/978-1-4613-1439-4

e-ISBN-13: 978-1-4613-1439-4

Copyright © 1996 by Kluwer Academic Publishers

Softcover reprint of the hardcover lst edition 1996

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, mechanical, photo
copying, recording, or otherwise, without the prior written permission of the
publisher, Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell,
Massachusetts 02061

Printed on acid-free paper.

www.manaraa.com

Automated Software Engineering 3, 189-191 (1996)
© 1996 Kluwer Academic Publishers. Manufactured in The Netherlands.

CASE: The Coming of Age for Automated
Software Development

HAUSI A. MULLER
University of Victoria

RONALD 1. NORMAN
San Diego State University

JACOB SLONIM
IBM Canada Ltd.

Over the last dozen years, computer-aided software engineering (CASE) has continued to
evolve and improve, but so has the state of software development research and its application
in the commercial marketplace. What James Martin, in 1989, called "industrial-strength"
CASE, was almost entirely PC-based. It was not even close to the two- and three-tier CASE
architectures of 1996.

As software development moved into the 1990s, collaborative CASE and integrated
CASE environments were beginning to appear in software development organizations.
However, in the last five years, the quick and steep rise in demand for GUI -based software has
provided numerous challenges and opportunities to CASE researchers, vendors, consultants,
and practitioners.

The target that CASE is attempting to hit-large-scale software development---continues
to move as industry adopts advances in technology. That creates a constant challenge to
CASE acceptance in the marketplace. To face that challenge, CASE '95, the Seventh
International Workshop on CASE, convened in Toronto, Canada in July 1995. Over 200
researchers, vendors, and practitioners met to assess the current state of CASE; review and
discuss current CASE-related research; preview, sell, and research CASE tools; and discuss
the direction CASE should take for the next few years. Much work was accomplished under
the direction of Jacob Slonim, Head of Research, IBM Canada Ltd., who served as General
Chair for CASE '95.

The CASE '95 International Program Committee, under the direction of the Program Co
Chairs Hausi Muller and Ronald Norman, worked diligently to assemble forty high-quality
research papers, interesting tutorials presented by leaders in their fields, and workshops on
important and timely topics. There were over 120 research papers submitted from around
the world. The first Stevens Lecture on software development methods in honor of the
late Wayne P. Stevens was given by Tony Wasserman, founder and chairman of Integrated
Development Environments, Inc. (IDE), USA.

The eight research papers selected for this special issue of JASE were rated highly
by the CASE '95 International Program Committee, subjected to JASE's rigorous review

www.manaraa.com

190 MULLER, NORMAN AND SLONIM

standards, and substantially revised since their inclusion in CASE '95's Proceedings. Each
paper is briefly introduced here.

As its title suggests, "Automating the Software Inspection Process" by MacDonald, et al.
reviews four main areas of software inspection automation being utilized today-document
handling, individual preparation, meeting support, and metrics collection. That overview
precedes a description and comparison of five tools that have been developed to support
the inspection process. The authors summarize by discussing the additional features and
associated benefits that could be provided by automated support for inspection.

Gangopadhyay and Mitra's article, "Design by Framework Completion," explores the no
tion of exemplar, which they define as an executable visual model for a minimal instantiation
of the architecture. An exemplar documents frameworks that define an architecture for a
family of domain-specific applications or subsystems. This article proposes a paradigm shift
when designing in the presence of reusable components. The authors advocate a top-down
approach for creating applications in which all components obey the same architectural
rules that are governed by the framework.

The third article, "Building an Organization-Specific Infrastructure to Support CASE
Tools," by Henninger advocates an organization-wide development infrastructure based
on accumulated experiences within application and technical domains. The domain life cy
cle formalizes a process for accumulating project experiences and domain knowledge, thus
freeing the developers to concentrate on less well-known elements of an appli
cation.

Ng, Kramer, and Magee's article, "Automated Support for the Design of Distributed
Software Architectures," describes a "software architect assistant," which is a visual tool
for the design and construction of distributed systems. Their tool supports a compositional
approach to software development. Their objectives for the tool are to automate mun
dane clerical tasks, enforce program correctness and consistency, and accommodate the
individual working styles of developers.

"Domain Modeling for Software Reuse and Evolution" by Gomaa, et al. describes a
prototype domain-modeling environment used to demonstrate the concepts of reuse of both
software requirements and software architectures. Their environment, which is independent
of the application domain, is used to support the ct.evelopment of domain models and to
generate specifications for target systems. The concept of reuse is prevalent at several levels
of the domain-modeling method and prototype environment.

The sixth article "Enveloping Sophisticated Tools into Process-Centered Environments"
by Valetto and Kaiser presents a tool-integration strategy based on enveloping pre-existing
tools without source-code modifications or recompilation and without assuming an ex
tension language, application programming interface, or any other special capabilities on
the part of the tool. Their strategy is intended for sophisticated tools, such as groupware
applications.

Krogstie's "Use of Methods and CASE-Tools in Norway: Results from a Survey" re
ports the results of a survey investigation on development and maintenance representing
52 Norwegian organizations. One trend shows an increased use of packaged solutions,
although larger organizations continue to develop custom applications and have in place
comprehensive development and maintenance methodologies for the use of CASE tools.

6

www.manaraa.com

INTRODUCTION 191

The survey's results show a modest difference in the perception of CASE benefits between
users and nonusers, but this result is not statistically significant.

The final article in this special issue of JASE, "A Debugging and Testing Tool for Sup
porting Evolutionary Software Development" by Abramson and Sosic, describes a tool
for debugging iJrograms that have been developed over long periods of time. Their tool
enhances the traditional debugging approach by automating the comparison of data struc
tures between two running programs-a program from an older generation that is known
to operate correctly and a newer version that needs to be debugged. A visualization system
allows the user to view the differences between the standard data structure and the revised
one. The authors demonstrate the use of their tool on a small test case.

As the end of the twentieth century approaches, the CASE community of researchers,
vendors, and practitioners realizes that much has been accomplished, even though our
target keeps moving towards a software development environment that is more and more
sophisticated and automated. Software developers around the world are searching for
more sophisticated, integrated, and complete CASE environments to satisfy their ever
increasing demand for high-quality software that is delivered on time. We hope the articles
in this special issue contribute positively to your search for new ideas for your software
development. Best wishes for your continued success.

7

www.manaraa.com

Automated Software Engineering, 3,193-218 (1996)
© 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Automating the Software Inspection Process

FRASER MACDONALD, JAMES MILLER, ANDREW BROOKS. MARC ROPER, MURRAY WOOD

fraser@cs.strath.ac.uk

Empirical Foundations of Computer Science (EFoCS)
Department of Computer Science, University of Strathclyde, Glasgow, U.K., GI IXH

Abstract. Inspection is widely believed to be the most cost-effective method for detecting defects in documents
produced during the software development lifecyc1e. However, it is by its very nature a labour intensive process.
This has led to work on computer support for the process which should increase the efficiency and effectiveness
beyond what is currently possible with a solely manual process. In this paper, we first of all describe current
approaches to automation of the inspection process. There are four main areas of inspection which have been the
target for computer support: document handling, individual preparation, meeting support and metrics collection.
We then describe five tools which have been developed to support the inspection process and compare the capa
bilities of these tools. This is followed by a fuller discussion of the features which could be provided by computer
support for inspection and the gains that may be achieved by using such support.

Keywords: Software inspection, CASE, collaborative work

1. Introduction

The inspection process was first described by Michael Fagan in 1976 (Fagan, 1976). It
is a rigorous method for statically verifying documents. A team consisting of the author
of the document, a moderator, a recorder and a number of inspectors proceed to inspect
the document using a multi-stage process. The inspection starts with a period of planning,
where the participants are selected and materials prepared. The next stage is the overview,
where the group receive a briefing on the document under inspection. During preparation,
each member of the team individually becomes familiar with the material. There is some
debate over whether defects should be detected during this phase. Fagan (1976) states that
this should be left to the next stage, while others such as Gilb and Graham (1993) advocate
that many defects can be found at this point. The preparation stage is followed by the actual
inspection meeting, involving the entire team. At this point the team categorise each defect
for severity and type and record it for the author to fix. This meeting is followed by a period
of rework, where the author addresses each defect. Finally, a follow-up is carried out to
ensure each defect has been addressed.

The benefits of inspection are generally accepted, with success stories regularly published.
In addition to Fagan's papers describing his experiences (Fagan 1976, 1986), there are many
other favourable reports. For example Doolan (1992) reports a 30 times return on investment
for every hour devoted to inspection. Russell (1991) reports a similar return of 33 hours
of maintenance saved for every hour of inspection invested. This benefit is derived from
applying inspection early in the lifecycle. By inspecting products as early as possible, major

www.manaraa.com

194 MACDONALD ET AL

defects will be caught sooner and will not be propagated through to the final product, where
the cost of removal is far greater.

Despite the benefits, inspection has been found to be difficult to put into practice. This
can be attributed to several factors. Firstly, it requires an investment in time and money to
introduce it. Although the investment is reasonable when compared with the benefits, there
may be a reluctance to devote the necessary resources, especially during a project where
progress has fallen behind schedule. Another factor, according to Russell (1991), is the
"low-tech" image of inspection, which is contrary to today's technology saturated devel
opment environments. Russell also points out the confusion between inspection, reviews
and walkthroughs. The main difference is that inspection is highly formal. Walkthroughs
tend to be used for training purposes, while reviews are aimed at achieving consensus on
the content of a document. Both techniques will find defects, but neither are as effective as
inspection (Gilb and Graham, 1993). If a development team is already using one of these
method, it may be difficult to persuade them that inspection is better.

When inspection is implemented properly, the results achieved are worthwhile, as the
inspection process provides an increase both in overall product quality and in productivity
(Ackerman et al., 1989). However, manual inspection is labour intensive, requiring the
participation of four or more people over a long period of time. By automating some parts
of the process and providing computer support for others, the inspection process has the
capability of being made more effective and efficient, thus potentially providing even greater
benefits than are otherwise achieved. In addition, one desirable attribute of inspection is
rigour. Using computers to support the process can help provide this rigour, and improve
the repeatability of the inspection process. Repeatability is essential if feedback from the
process is to be used to improve it.

In Section 2 we describe current approaches to tool support for inspection. Section 3
describes currently available tool support and in Section 4 we evaluate that tool support.
In Section 5, we describe the features we believe an inspection support tool could provide,
along with the ways in which the process may be thus improved. Section 6 concludes the
paper.

2. Current Approaches to Automating the Inspection Process

In this section we describe the features of inspection which have been tackled by current
inspection tools. These features fall under four broad categories: document handling,
individual preparation, meeting support and data collection.
Document Handling The most obvious area for tool support is document handling. Tra
ditional inspection requires the distribution of multiple copies of each document required.
Apart from the cost and environmental factors associated with such large amounts of paper,
cross-referencing from one document to another can be very difficult. Since most inspec
tion documents are produced on computer, it is natural to allow browsing of documents
on-line. Everyone has access to the latest version of each document, and can cross-reference
documents using, for example, hypertext. These features demonstrate that computerising
documents is not simply a change of medium, but provides an opportunity to enhance the
presentation and usability of those documents.

10

www.manaraa.com

AUTOMATING THE SOFTWARE INSPECTION PROCESS 195

The comments produced by inspectors indicate when and where an inspector takes issue
with the document. In the traditional inspection, they are recorded on paper. Computer
support allows them to be stored on-line, linked to the part of the document to which they
refer. They can then be made available for all inspectors to study before and during the
inspection meeting. This has the added advantage of helping to reduce the inaccuracies
and mistakes which can occur during the inspection meeting, including the failure to record
some comments altogether. This effect has been observed by Votta (Votta, 1993) and can
occur in several situations, including when inspectors are unsure of the relevance of their
comments. By storing all comments on-line, it is easier to ensure that each one is addressed.

Individual Preparation There are several ways in which tool support can assist in indi
vidual preparation, in addition to the document handling and annotation facilities described
above. Automated defect detection can be used to find simple defects such as layout viola
tions. This type of defect, while not being as important as such items as logic defects, must
still be found to produce a correct document. If finding them can be automated, inspectors
can concentrate on the more difficult defects that cannot be automatically found and that
have a potentially greater impact if not found. This may be achieved by the introduction of
new tools, or the integration of the inspection environment with existing tools. The latter is
obviously preferable. There are various levels of integration, from simply reporting defects
to actually producing an annotation relating to the defect for the reviewer to examine.

Computer support can provide further help during individual preparation. Generally,
inspectors make use of checklists and other supporting documentation during this stage.
By keeping these on-line, the inspector can easily cross-reference between them. On-line
checklists can also be used by the tool to ensure that each check has been applied to the
document, thereby enforcing a more rigorous inspection, while on-line standards, such as
those pertaining to the layout of documents, assist the inspector in checking a document
feature for compliance.

Meeting Support Intentionally, or otherwise, some members of the team may not spend
sufficient time on individual preparation, but will still attend the group meeting and try to
cover up their lack of preparation. Inevitably, this means that the inspector in question will
have little to contribute to the group meeting, thus wasting both the group's time and the
inspector's time. Computer support can help avoid this situation by monitoring the amount
of time spent by each inspector in preparation. The moderator can use this information to
exclude anyone who has not prepared sufficiently for the group meeting, or to encourage
them to invest more effort. The moderator can also decide when is the best time to move
from the preparation stage to the meeting, taking account of the amount of preparation
performed by each inspector.

Since guidelines state that a meeting should last for a maximum of only two hours (Fagan,
1976), it may take many meetings to complete an inspection. There is a large overhead
involved in setting up each meeting, including finding a mutually agreeable time, a room
to hold the meeting and so forth. There is also an overhead involved for each participant
travelling to the meeting. By allowing a distributed meeting to be held using conferencing
technology, it may be easier for team members to 'attend' the meeting using any suitably
equipped workstation.

11

www.manaraa.com

196 MACDONALD ET AL

An alternative solution to the meeting problem is to remove the meeting stage altogether,
performing the inspection asynchronously. In this type of inspection, each inspector can
perform their role independently. The inspection moves from stage to stage when every
inspector has completed the required task. This type of inspection can also reduce the
meeting losses referred to before.

When a meeting is taking place, it can sometimes be useful to conduct polls to quickly
resolve the status of an issue. This is especially important if the meeting is being held
in a distributed environment. Computer support can allow polls to be quickly taken, thus
helping the inspection meeting progress rapidly.
Data Collection An important part of inspection is the collection of metrics which can be
used to provide feedback to improve the inspection process. The metrics will include such
data as time spent in meeting, defects found, overall time spent in inspection and so forth.
Collecting these metrics is time-consuming and error-prone when carried out manually, so
much so that Weller (1993) states:

" ... you may have to sacrifice some data accuracy to make data collection easier ... "

This is obviously undesirable. Computer support allows metrics from the inspection to
be automatically gathered for analysis. This removes the burden of these dull but necessary
tasks from the inspectors themselves, allowing them to concentrate on the real work of
finding defects. Furthermore, the computer can often be used for analysing these metrics
with little further work. This is unlike manual data collection, where the data has to be
entered before it can be analysed. Automated data collection also has the advantage of
being less error-prone than its manual counterpart.

3. Current Support for Automated Inspection

In this section we describe currently available tool support for inspection in terms of the areas
described in the previous section. Although all tools described have the aim of improving
the inspection process, each has its own approach. Additionally, some of the tools use
variations of the Fagan inspection process. The variation used will be described along with
the tool which supports it.

3.1. ICICLE

ICICLE (Intelligent Code Inspection in a C Language Environment) (Brothers et aI., 1990;
Sembugamoorthy and Brothers, 1990), as its name suggests, is an automated intelligent
inspection assistant developed to support the inspection of C and C++ code. This inspection
tool is unique in making use of knowledge to assist in finding common defects. Since
the knowledge is of a very specific kind, ICICLE is less suitable for supporting general
inspection. It can, however, be used to inspect plain text files by turning off the initial
analysis. The tool is designed to support two phases of inspection: comment preparation
(individual) and the inspection meeting itself. During the inspection meeting, the tool

12

www.manaraa.com

AUTOMATING THE SOFTWARE INSPECTION PROCESS 197

provides the functionality available in individual checking, supplemented by support for
cooperative working.

iii ICICLE camn-t ~ in R.c I'D

Elle ~Indows Module M!etlng Qptlons !!elp

Des_: fie IR.c IUleEJ Setting destination to R.c, line 1

IS6!1I-: 01 I
Setting destination to definition olvectone.
vectone has been Indexed.

~ IGoIa __ Commantl

~ Hnclude <stream.1I>
D 2-

3 class vectorx
D 4= {

5 int 'v;
6 int S2;

D 1- public:
8 vectorx (int);
9 -vectorx () { delete v; I ;

D 10-
D 11- iot size() (return sz;)
D 12- void set_size (int) ; 1-, Int~ operator() (int);

ioU el ... (int i) { return vIi);)
);

16
11 vectorx: :IiIIlIllEl<int s) /I constructor
18 {

D 19- if (s<= 0)
20 cout « Mvectorx: bad vector size\n";
21 5Z = s;
22 v = new intIs);
23)
24

Figure 1. The main ICICLE display.

Document Handling The source code is displayed in a large window with each line
numbered (see Figure 1). This window can be augmented by a second code window,
allowing the user to compare two parts of the code simultaneously. Next to the line numbers
are two symbols referring to comments. A letter indicates the status of the comment. This
can include deferred (not dealt with yet), ignored (user decides the comment is inappropriate
or otherwise suspect) or transferred (chosen to be discussed at the inspection meeting). The
second symbol indicates the presence of a comment for this line. A hyphen indicates a single
comment, while an equals represents multiple comments.

By clicking on the appropriate line, a comment window for that line is raised. A typical
comment window is shown in Figure 2. This window allows a comment to be modified
or inserted and its status changed. Any changes to this comment can be propagated to all
comments on the line or even all commments in the code which have the same text.
Individual Preparation ICICLE can automatically prepare comments on source code using
its analysis tools. These include the UNIX tool lint and ICICLE's own rule-based static
debugging system. 1 in t can be used to detect certain defects in C code, such as unreachable
statements and possible type clashes. The ICICLE rule-based system can be used to flag
both serious defects, such as failure to deallocate memory, and more minor defects, such
as standards violations. There is also the ability to include customised analysis procedures.
The comments produced by all these tools can either be accepted by the inspectors if they
agree with them, modified or else completely rejected. ICICLE also provides a facility

13

www.manaraa.com

198 MACDONALD ET AL

I!I ICIClE CDmment_ !!!l 1·· .. · .. '''e''''··· f1ii1.'@",···'··.i·M"'''@!!i·@
D Line 13; IIl1RHIlIG: specify inl iDe function outside of class defInition

• Edit Comment File: IR.c I Line: 113 I
<> New Comment Comment: I returning pointer or reference to data IHIIber I
Explanation: This tends to violate data encapsulation by givinq the client

:IThe object heing returned is a pointer or refereDCa to a _r.

prograa direct access to aa.ber data. I~
• This .omment only <> All in Window <> All of this type

I Done I! Transfer II Ignore I! Defer I! Propose II Help I

Figure 2. The ICICLE comment preparation window.

to allow browsing of Unix manual pages. The system also provides cross referencing
information for 'objects' such as variables and functions. For example, clicking on the use
of a variable would give the user an option to move to the point of declaration, or any other
usage of the variable. This facility is available over multiple source files.

Meeting Support The inspection meeting is held with every inspector using ICICLE in
the same room. No provision is made for distributed meetings, since it is felt by the authors
that they "do not wish to supplant the ordinary verbal medium by which the bulk of meeting
communication occurs" (Sembugamoorthy and Brothers, 1990).

During the inspection meeting, each inspector has access to all documents as well as
their own comments. Each inspector has the code window displayed on screen. The reader
controls the traversal of this window for all participants, just as a single inspector does
during comment preparation. Every code window is locked to the reader's view, although
an inspector can open an extra window to allow simultaneous inspection of two sections of
the code.

The reader proceeds through the document until an issue is proposed by an inspector.
When this happens, a proposal window appears on all displays. The scribe's proposal win
dow is shown in Figure 3. The inspection team discuss the comment, and when discussion
is complete, the scribe is able to classify the comment and accept it, or reject the comment
completely. If the comment is accepted it is stored in a file which becomes the output of the
meeting. The other participants windows are similar, but lack the controls for classifying a
comment. During the meeting, participants can send single line text messages to all other
participants.

Data Collection When the inspection meeting is complete, ICICLE generates a list of all
accepted defects to be given to the author of the product under inspection. A summary of
the defects by type, class and severity is also generated. The scribe can also prepare a report
detailing the total time spent in preparation and in meeting, the inspectors present and other
such process information.

14

www.manaraa.com

AUTOMATING THE SOFTWARE INSPECTION PROCESS 199

iii ICIClE f'nlpOSaIWIIWIow ~

efocs proposes R.c line 12:

lnot all arguments in list are ~d I
the arguments in a function pretotype.

lilt is helpful both for readability and accuracy to name

I~
+ Data + Missing

~ Documentation ~Wrong

~ Functionality ~ Extra

~ Logic

~ Performance

~ Standards + Minor

~ Other ~ Major

, Accept I I Reject I

Figure 3. The ICICLE comment proposal window.

3.2. Collaborative Software Inspection

Collaborative Software Inspection (CSI) (Mashayekhi et aI., 1993), is designed to support
inspection of all software development products. The tool is described as applied to the
Humphrey model of inspection (Humphrey, 1989). In this variation, each inspector creates a
list of faults during individual inspection, which are then given to the author of the document
before the inspection meeting. It is the author's task to correlate these fault lists and to then
address each defect at the inspection meeting.
Document Handling CSI provides a browser for viewing the document under inspection,
which automatically numbers each line. When-a line is selected, an annotation window pops
up, allowing the inspector to make a comment about that particular line. This annotation is
supported by hyperlinks between the annotation itself and the document position to which
it refers. Since annotations can only refer to one line, and there may be a need for general
comments about an area of the document, CSI also supports a notepad system, which allows
annotations about missing material.
Individual Preparation Support is available from CSI for detecting defects by provision
of on-line criteria which help the inspector determine faults. Also, when recording annota
tions, the inspector is given guidance in categorising and sorting faults. After all inspectors
have finished individual inspection, the author can access all annotations associated with the
document and correlate them into a single fault list, supported by CSI through automatically
summarising and integrating the individual fault lists. The author can then categorise each
fault, either accepting it or rejecting it. CSI also allows the author to sort the fault list on
multiple keys, including severity, time of creation and disposition.
Meeting Support At the inspection meeting, the document under inspection is made visible
on a window on each inspector's screen. The author guides the meeting using the correlated
fault list. Each item is discussed, and when agreement is reached regarding its severity, this
is noted by the recorder in the action list. Note that the original annotations are available

15

www.manaraa.com

200 MACDONALD ET AL

at this point to help inspectors understand the nature of the fault, and further annotations
can be added during the meeting. When the end ofthe fault list is reached, the inspectors
agree on the status of the meeting, indicating whether the material under inspection is to
be accepted or reinspected. This is noted by the recorder. CSI provides for distributed
inspection, allowing an inspection meeting to be carried out with team members in a variety
of disparate locations. This is supported by a teleconferencing tool called Teleconf (Reidl
et aI., 1993), which provides audio for the meeting.

The developers of CSI have moved on to a new prototype inspection system (Mashayekhi
et al. 1994). Called CAIS (Collaborative Asynchronous Inspection of Software), the system
uses the CSI system for annotating documents. However, the system is designed to be used
asynchronously and does not rely on having all inspection participants present for any part
of the process. This asynchrony can reduce the amount of time required to complete the
inspection, since there is no need to find a common time when all inspectors are free to
carry out the meeting.
Data Collection The inspection summary is used to record meeting information such
as team members present, their roles and the status of the inspection meeting. CSI also
provides a history log. This collects several metrics from the process, such as the time spent
in the meeting and the time taken to find a fault, as well as the number and severity of faults
found.

3.3. Scrutiny

Scrutiny (Gintell et al., 1993) is an inspection tool based on the inspection method used
at Bull HN Information Systems. This process consists of four stages. The first stage
is initiation and is comparable to overview in the Fagan model. The second stage is
preparation, as in the Fagan model. The inspection meeting itself is called resolution,
while the final stage, completion, encompasses both rework and follow-up. The roles taken
by each participant are also similar, however Scrutiny also implements some changes. First,
the moderator's role is changed to include the duties ofthe reader. In addition, the recorder
role can be taken by more than one person. Scrutiny also explicitly implements the role of
the producer, who can answer questions regarding the document. Finally, there is another
role in the form of the verifier who ensures the defects found by the inspection team have
been correctly addressed by the author. This role may be assigned to any participant. Any
other members of the team are cast as inspectors. Each stage of the process, along with
each of the four roles, is modelled in Scrutiny.
Document Handling The work product window allows each inspector to view the docu
ment under inspection (see Figure 4). The document is displayed with each line numbered
and the current focus indicated by reverse video. The current focus is usually a single line
but may also be a zone of several lines. Text which has been inspected is italicised, and the
percentage of the document covered is displayed in the top right hand corner. The window
has controls to move through the document line by line, and also has controls to mark a
zone. Finally, there is a button to enable the creation of a new annotation.

When an annotation is created or modified, it appears in an annotation window, an example
of which is given in Figure 5. This displays the line numbers to which the annotation refers

16

www.manaraa.com

AUTOMATING THE SOFTWARE INSPECTION PROCESS

~ Scrutiny Wot1< Product: Trial

I !ictions ~ontrols

Document Name: I Bill.of.Rights I Document -: 11 of 1

~=======:
Current Focus: 112 - 14 I Coverage %: 119 %

I------========~---=========~~~
5 or prollibiting tile free exercise tnereof;
6 or abridging
7 the freedom of speech or of tile press;
8 or tile rigllt of tbe people peaceably
9 to as semble and
10 to petition tbe Government for a redress of grievances.
II

16 Article I".
17 No soldier shal L in time of peace,
18 be quartered in an~ house wi thout the consent of the owner,
19 nor in time of war but in a manner to be prescribed b~ law.
20
21 Article IV.

- -E (I-II: I B tlllljl""': -;11 1-. t ~ t FI H Id jr Ir"r It j 1 ,---- 4 -----------------------------

Previous line II Next Line II Goto Line II Annotate II
Create Zone I! Prev i OUS Zone I! Next Zone I! F' ~ I,' '.l<.'I? ;,;;,1: l"

Figure 4. The Scrutiny work product window.

I!I Scrutiny Annotation Input

rei ;1 I
D-

I Title II
D-

1 __ - MI.'''':II
<> Re •• rk <> Question ~ Defect EJBEJBB

Figure 5. The Scrutiny annotation window.

I
~

I

201

and the author of the annotation, along with its content and a title. Buttons allow the type
of annotation to be recorded as either a question, potential defect, remark or reply. When
an annotation is created, an icon appears beside the line or zone to which it refers. Scrutiny

17

www.manaraa.com

202 MACDONALD ET AL

currently only supports text documents. It is hoped to overcome this by integrating it with
other tools.

Individual Preparation Here, Scrutiny simply allows the inspector to traverse the doc
ument, making annotations which can be used during the resolution stage. There is no
assistance with checklists or other supporting documentation. All defects must be found
manually.

Meeting Support Before the inspection meeting is started, the moderator can view the
preparation time of each inspector, to ensure that enough time has been given to allow
adequate preparation. Each inspector also has the opportunity to add time for any off-line
preparation which they may have engaged in.

During the meeting, the work product window is used by each participant to view the
document, with the moderator having additional controls to change the current focus and to
initiate a poll. The moderator guides the inspectors through the document, while they read
and discuss the annotations made. Polls are used to resolve the status of an annotation.

Ii SCrutiny: Trial !l!l

I ~ctions ~helves !!>ligations I;.ontrois I
Meeting T~pe: I Inspection I Stage: I Resolution I

~

Current D""'""'""t Focus: Ivar/scrutin~/""'rkslBill.of .Rights

PARTICIPANT ROLE<S) STATUS PROCEED

lIlurra~ INS Showpresence ---
and~ INS Showpresence ---
!flare INS Showpresence ---
jaflles INS Showpresence ---
fraser MOD, REC Establishing ---

IStart Inspection Heoting II p!, ~';.~~:;r,t, II Hessage I
, Current Annotations j
I Sort annotations I ~ispla~ 011 selecte~ ~isPla~ next unreaj I Show current Q I

Defects

I I
Polls

I I
Obli got ions I Obligations on Others

I I
InBox

I

Figure 6. The Scrutiny control window.

18

www.manaraa.com

AUTOMATING THE SOFTWARE INSPECTION PROCESS 203

Scrutiny also provides a main control parrel called the control window, a copy of which
is seen by each inspector (Figure 6). This window consists of four major subwindows. The
participant status display contains a list of the participants along with an indication of their
current activities. The annotations subwindow contains a list of annotations made on the
current document, along with their owners and a type. The defect subwindow lists defect
reports that have been discussed and their status agreed upon. The status includes the type
and severity of the defect. The final subwindow is concerned with polls. Every time a poll
is taken during the inspection meeting to resolve an issue, a record of it is kept here.

Scrutiny can be used for both same-place and distributed inspection. The latter makes
use of both audio and teleconferencing facilities. It is also possible to hold distributed
inspections without these audio and teleconferencing facilities by making use of Scrutiny's
built in textual communications systems. The discussion client allows inspectors to ex
change textual points of discussion. Each participant has a list of the current discussion
points which can be read and replied to. Replies have a reference to the original point, and
participants can traverse these chains of points, allowing them to follow a discussion and
then add their own comments. Scrutiny also provides a means of sending a simple message
to meeting participants. In addition to composing your own message, there are several
frequently required messages, such as a request to move to the previous line, which can
quickly be sent. These messages can be sent to named individuals, or the group as a whole.
It is not clear how effective these mechanisms are when holding a synchronous meeting,
since the medium is obviously not as information rich as face-to-face communication, even
that provided by teleconferencing.
Data Collection Scrutiny automatically generates an inspection report containing all the
relevant information about the inspection and its participants, details of the time spent by
each participant in the inspection and the coverage of the document they achieved. It also
contains a complete defect list with summary information.

3.4. InspeQ

InspeQ (Inspecting software in phases to ensure Quality) is a toolset developed by Knight
and Myers (1991; 1993) to support their phased inspection technique. The technique was
developed by Knight and Myers with the goal of permitting the inspection process to be
"rigorous, tailorable, efficient in its use of resources, and heavily computer supported"
(Knight and Meyers, 1991).

A phased inspection consists of an ordered set of phases, each of which is designed to
ensure the product possesses either a single, specific property or a small set of related
properties. The phases are ordered so that each phase can build on the assumption that the
product contains properties that were inspected for in previous phases. The properties that
can be checked for are not necessarily those concerned purely with defects of functionality.
They can include such qualities as reusability, portability and compliance with coding
standards.

There are two types of phase: single-inspector and multiple-inspector. A single-inspector
phase uses a rigorous checklist. The product either does or does not comply with each item
on the checklist. The phase cannot be completed until the product satisfies all checks.

19

www.manaraa.com

204 MACDONALD ET AL

These phases are carried out by a lone inspector. Multiple-inspector phases are designed
for properties which cannot easily be described by binary questions. The product is first
examined individually by each inspector. This individual checking makes use of a checklist
that is both application specific and domain specific, though the questions are not binary, as
they are in the single-inspector phase. The individual checking is followed by a meeting,
called a reconciliation, in which the inspectors compare their findings. In a good inspection,
these results from all inspectors will be very similar. Note that although it is not designed
to do so, the reconciliation provides a further opportunity for fault detection.

Phased inspections are designed to allow experts to concentrate on finding defects that
they have specialised knowledge of, thus making more efficient use of human resources. For
example, it may be more efficient to have domain analysts inspecting code for reusability,
since they will have expert knowledge in that particular field.

Document Handling The work product display is the major tool used during inspection,
allowing the inspector to browse the document under inspection. By using multiple copies,
the inspector can simultaneously examine separate parts of the same document. It also
allows the inspector to search the document. The comments display allows the inspector to
note any issues found. To provide context for each issue, parts of the text or line numbers
can be pasted into the comments window. This can also be used to demonstrate a defect by
example: the inspector pastes in the incorrect version and then suggests a correct version.
InspeQ carries out formatting of these comments before they are passed on to the author.

Individual Preparation A checklist display is used to display the checklist associated with
the current inspection. This ensures that the inspector knows exactly what is required to
be examined in this phase. The checklist also allows the inspector to indicate completion
of each check, by marking each item as complies, does not comply, not checked or not
applicable. To help enforce a rigorous inspection, InspeQ ensures that all checklist items
are addressed by the inspector before the product exits the phase. A future extension
will ensure that each checklist item is applied to every feature associated with that item.
Checklists usually ensure compliance with one or more standards. To help the inspector
apply the checklist, a standards display is available which presents each standard in full, as
well as providing examples.

The highlights display can allow the inspector to quickly identify specific features of the
document. These can be highlighted but can also be displayed in a separate window for
examination. An example would be to highlight all the whi 1 e statements in a C program to
allow them to be checked for correctness, without the distraction of the surrounding code.
This function requires syntactic information about the document, which is more readily
available for code than any other type of document.

Meeting Support Since InspeQ is designed for individual inspector use, there is no support
for group meetings.

Data Collection Again, InspeQ is designed for individual inspector use, and only generates
the comment list for each inspector. These lists are then compared at the reconciliation.

20

www.manaraa.com

AUTOMATING THE SOFTWARE INSPECTION PROCESS 205

3.5. Collaborative Software Review System

Collaborative Software Review System (CSRS) (Johnson, 1994a) is an environment to
support the use of FTArm (Formal Technical Asynchronous review method) (Johnson and
Tjahjono, 1993), a development of Fagan inspection. FTArm is a general method for
inspecting any type of document, consisting of six phases. The first is Setup, which involves
choosing the members of the inspection team and preparing the document for inspection via
CSRS. This involves organising the document into a hypertext structure and entering it into
the database. The document is held as a series of linked nodes, with each node containing
some feature of the document. In the case of source code, each node would be a function,
variable or similar item. Orientation is equivalent to Overview in the Fagan process, and
may involve a presentation by the author. The goal is to familiarise the team with the work
under inspection. Private Review is similar to Preparation. The inspector reads each source
node in turn, and has the ability to create new nodes containing annotations. When each
reviewer has covered each node (or sooner, if required), the inspection moves on to the
next phase. In Public Review, all nodes become public and inspectors can asynchronously
vote on the status of each one, either confirm, disconfirm or neutral. Additional nodes
can be created at this stage, immediately becoming public. When all nodes have been
resolved, or if the moderator decides that further voting and on-line discussion will not be
fruitful, the public phase is declared complete. During Consolidation the moderator writes a
report detailing the results from the private and public review phases, including summarised
comments of inspectors. The moderator also decides whether a meeting is to be held to
resolve any remaining issues. If not, the report is distributed for signature by each reviewer.
The final phase is the Group Review Meeting which is used to solve any unresolved issues
remaining from the private and public review phases. The final inspection report is then
produced by the moderator.

As can be seen from the above description, FTArm is fundamentally different to the
traditional inspection process. Instead of consisting of an asynchronous and a synchronous
phase, almost the entire inspection is held asynchronously. This has great advantages in
making the inspection more flexible, since there is much less need for everyone to be in
the same place at the same time, but the effectiveness of such a technique has not yet been
empirically evaluated.

CSRS is probably the most flexible of all tools described here as it can be customised
to support different variants of the inspection process. This is accomplished using a pro
cess modelling language (Johnson, 1994b). This language has several facilities, including
constructs for defining phases of the method, a construct for defining the role of each par
ticipant, and constructs to define the artifacts used during the inspection. The latter also
includes support for checklists. The language can also be used to define the user interface,
as well as to control the type of data analysis carried out by CSRS.

Document Handling A document is stored in a database as a series of nodes. For source
code, these nodes would consist of functions and other program constructs. Source nodes
are created at the start of the inspection by the document author with the aid of the moderator.
The nodes are connected via hypertext-style links, allowing the inspector to traverse the
document. A typical source node is displayed in Figure 7. The name of the function is

21

www.manaraa.com

206

CSRS Screens Reviewer

5peclflcotlon:
Prlnt routIne$" for ehee~jn l the dec1ar.at.lon:t processed.

Soun:e-code :
!. yOld dec. ec'ot <DEC! _dIn

swHek (d-)deel .. cCCfltlton. decLklnd) (
case Dec1 T!tipe:

pr,lnt.F ("T ~pc iCs ;; " ~ d-)dec1_eOflY"lon . d ecLld-)ld_ch"rs) ;
t!:fpe_prlnt (d->dec1 .. cOf'V"\on . dacLt~pe);
pr.tnt.F ("'n ") ;
brea ;

cose Decl Voir:
prlntf ("Vor1oble Xs of t'::lpe " . d -) dec::1 _cQllVflon.docl_ld->1d_chars);
t~e_prlnt (d->decl_cQfIW'IIIon. decl_t'dpe':
pr1ntf (" "t address (Xd,Xd)'n",

break;

d-)deeL II"" . ctecl _acldr ->obJect_level.
d- >dec L r . decL.ctdr-)obJoct_oNset);

case OeelConst:
prlntf ("Consunt Xs of t'l;l pe ". d-)decLc:(tTW\"Ion.doel .. ld-)j.d_c'ho r.s):
t~p._prlnt (d-)dec l_c(IIN!I.on. decl .. type);
prlntf (" .and ""olue ") ;
\/01 u.e_pr .tnt (d-) aecl _const. doe-l_""Ooluo"') obJec.t_""",lue) ;
prlntf ("'n");
bro"k;

case DeclAre :
printt ("Formal Xs of t'dpe " . d-)dec:l_cQm'!'lon.decLl d ->1d_chars);
t~iDe_pr1nt (d -) cftc:l ... cOI'mIon. dec.l_t.!::fpe);
prlnt.t (.. . ""ode "):
swi tch (d-)decl ... orl . deel_a ri_tnode) {
cuo HOdcValue : prinef ("VALUE"); bre.t.k :
cue Mode'lla,.: p ri ntr C "VAR"); bre.ak;
coso ModcRea dOn l ... : prineF C" READONl't ") ; bre.tk:
)

breetk:
deF aou l t:

printt ('" Req,uest to pn.nt unknown kind ot declaor.atlon'n") :
break;

Issues:
(- >lmJdr7B)

Connenh:
Relolod-docunenl. :

MACDONALD ET AL

Lock Save Oose

•••• ,& ·····_M 1M

Figure 7. The main CSRS window.

given, followed by a specification of its intended function. This is followed by the source
code itself.

Annotations are also stored as nodes, and can be one of three types. The first type is a
Comment node, which is used to raise questions about the document and to answer them.
These are made public to all inspectors. An Issue node indicates a perceived defect in the
source node. Issue nodes are initially private to individual reviewers. An example issue
node is given in Figure 8. This issue is linked to the source code in Figure 7, where a link
to the issue node can be seen near the bottom of the display. Finally, an Action node is a
suggestion of the action that should be taken to resolve an issue. These are also private
to reviewers. The action node given in Figure 9 details a possible fix for the issue raised
previously.

22

www.manaraa.com

AUTOMATING THE SOFTWARE INSPECTION PROCESS 207

iii CoIrrnontaryl : ",suon7B I!!l
CSRS SCreeos Reviewer LocklSave Oose

Subject.: runetton name

C<oEIoaory :
Crlt.lcallt.y: Hod (Future Threat)

Sou:-ce-node : decl_prlnt

lines: 1

Duser Ipt.lon: The funct! on nM'llfi is 'll'er!;f s1f1"1iU a r to an
exist!n&: function.

Consensus: Conn rrn: 1- 01 sconF1 rill: 0 Heutra l : 0

Ru laled- i.:!SUBS :

Propo...o-oct.lons :
(-> Aclionll11W)

CDr'It'Ient:.s:

Figure 8. A CSRS issue node.

Individual Preparation The FfArm method predominantly consists of individual work,
and this is where CSRS provides the most support. During the private review phase, each
inspector has a summary of which nodes have been covered and which have still to be
covered. This information is also available to the moderator, who will use it to decide when
to move on from private review to the next phase. Since additional nodes may be created
after a reviewer has reviewed all the currently available nodes, CSRS has the facility to
automatically e-mail all reviewers when new nodes are created and have to be reviewed.
CSRS also provides an on-line checklist of standard issue types to assist the reviewer.

Support during public review is similar to that for private review, except now all nodes
are publicly accessible. This time the main focus is on issue nodes. Each reviewer has to
visit each node, where CSRS can be used to vote on that node's status. Again, the reviewer
has summary information available, indicating which nodes have still to be visited. The
moderator can also use this information to decide when to terminate public review, usually
when all reviewers have visited all nodes.

Meeting Support CSRS has little in the way of group meeting support, due to the pre
dominantly asynchronous nature of the inspection method implemented. The group review
meeting must be held face-to-face in the traditional manner. CSRS does not provide any
support except to help the moderator summarise the results and produce a Jb.T!jX formatted
report.

Data Collection CSRS provides automatic collection of such data as number and severity
of defects and time spent reviewing each node. It also has the ability to keep an event log,
which details the entire inspection from start to finish, allowing detailed (manual) analysis
later on.

23

www.manaraa.com

208

Iil commentaryz; Al;U",,#180

CSRS SCreens Reviewer

~jecl:. : F'unct!on n.",..e

flction-l\JIl." F ..

Sou"-ce-node: IS$ue .. 278

Description: Renome tI..s fu.nCtion to Pl"lnt_Dec:larattons

MACDONALD ET AL

L lJJckJSave J Close

_.
;f4'g"H liM.' •• ' • ., .

Figure 9. A CSRS action node.

Table 1. Summary of features of currently available inspection tools.

Text
Linked Annotations
Cross-referencing
Automated Analysis
Checklists
Supporting Documentation
Enforcement
Distributed Support
Decision Support
Metrics Collection

ICICLE

•
•
•
•

•

•

4. Comparison of Existing Tools

CSI Scrutiny

• •
• •

•

•
• •

•
• •

InspeQ CSRS

• •
•

• •
•
• •

(individual)

•
•

Table 1 summarises the features of each tool. It can be seen that while basic document in
spection and annotation is well-supported, the more advanced features described in Section
2 are less common. Here we compare the features supported by each tool.

Document support All the tools described handle plain text documents adequately. ICI
CLE, Scrutiny and CSI use the same technique of displaying the document with each line
numbered. Annotations can then be made which are linked to an individual line. Scrutiny
also uses the idea of a current focus, which is a current sentence of interest upon which an
annotation can be made. CSRS divides the document up into smaller chunks called nodes,
each of which can be inspected on its own and comments made via new nodes linked to
this one. InspeQ is the least well supported in this area, since comments are completely
separate from the source document, with only cut and paste facilities available to give a
context to a comment. In essence this only gives the facilities that a good text editor can
supply.

24

www.manaraa.com

AUTOMATING THE SOFTWARE INSPECTION PROCESS 209

ICICLE, CSI, Scrutiny and CSRS all allow classification of annotations, while InspeQ
only allows their creation or deletion. This limits the scope for collection of defect type
metrics, although it still allows the overall number of defects to be measured.
Individual Preparation Checklists are supported only by InspeQ, which uses them to
enforce a rigorous inspection by ensuring each item on the checklist is attended to by the
inspector. In a similar vein, CSI has the concept of a criteria list which helps inspectors
find and categorise faults. InspeQ also supports the displaying of standards, while ICICLE
can provide a browsing facility for manual pages like those provided in Unix. CSRS has
only a checklist of issue types, while Scrutiny has no support in this area at all.

ICICLE is the only tool to provide any automatic defect detection. This is currently
provided using the UNIX tool lint and ICICLE's own rule based system, which contains
knowledge about C source code that can be used to detect such defects as coding violations.
Meeting Support To ensure that each inspector has spent sufficient time in preparation,
CSRS can provide details on the amount of time spent on inspection by each inspector.
This prevents inspectors misleading the moderator about their state of preparation. The
checklists in InspeQ also perform this function. Scrutiny stores the percentage of document
covered by each inspector, as well as the time spent by each inspector in both preparation
and meeting.

In terms of support for distributed meetings, CSI uses Teleconf, which provides an audio
channel only. Scrutiny also supports the use of an audio channel, in addition to its discussion
and messaging facilities. CSRS has no conferencing facilities since most of the inspection
takes place asynchronously. ICICLE also lacks these facilities and is designed to be used
when the inspection meeting takes place in one room with all inspectors present. The InspeQ
toolset is designed for individual inspector use only and therefore lacks any conference
facilities.

Decision support is available through polls in CSRS and Scrutiny. Neither ICICLE, CSI
nor InspeQ provide such support. In the case of InspeQ this is because the toolset is not
used in the group meeting at all.
Data Collection ICICLE automatically gathers metrics on the number and type of com
ments made, as well as their severity, as noted by the scribe during the inspection meeting.
CSI uses a history log to record defect metrics including severity, time taken to find the
defect and overall length of time spent in meeting. CSRS and Scrutiny have the most com
prehensive metric gathering capability. CSRS has the ability to gather defect metrics, as
well as fine-grained metrics on the amount of time spent by each inspector reviewing each
node. Scrutiny has similar collection facilities, including the time spent in inspection and
the coverage of the document achieved by each inspector. InspeQ provides no facility for
metric gathering.

5. An Informal Specification of an Inspection Support Tool

The previous sections have described current approaches to automating the software in
spection process and tools which implement these approaches. In this section, we discuss
a more comprehensive set of features that we feel an inspection support tool could provide,
along with the way in which these features may improve the inspection process.

25

www.manaraa.com

210 MACDONALD ET AL

Figure 10. A model of a generic inspection process.

A model of a generic software inspection process is given in Figure 10. This model has
been derived from eight well-known inspection methods, and is more fully described in
Macdonald and Miller (1995). The most obvious extensions to the Fagan method described
in the introduction are the entry and and exit phases, proposed by Gilb and Graham (1993),
and the flexible meeting structure, which is required to model all inspection variations.
Each inspection consists of a number of these meetings, each of which may have different
objectives. In the following discussion we assume there are two such meetings: one for
individual preparation and a group inspection meeting. The self-check phase in the model
is intended to allow the results of a meeting to be validated. This is usually perfonned
by the moderator and can be thought of as a single-person inspection of the results. The
self-check phase will not be discussed further.

5.1. Entry and Exit

An entry phase is used to ensure that certain criteria are met before the inspection begins,
ensuring that the inspection effort is not wasted. These criteria usually indicate that the
document is ready for inspection. The exit phase involves ensuring that some criteria are
met before the inspection is completed. Typical exit criteria include checking that the
estimated number of defects left in the document is below an acceptable threshold and that
a suitable inspection rate was adopted. This rate is the average amount of material inspected
in an hour. An inspection support tool should simply present these criteria and allow them
to be answered, usually by the moderator. If the criteria are satisfied, the tool can allow the
inspection to begin or to complete, as appropriate.

26

www.manaraa.com

AUTOMATING THE SOFTWARE INSPECTION PROCESS 211

5.2. Planning and Overview

An inspection is performed by people with well-defined roles and therefore those roles
should be modelled by the tool. The capabilities given to each participant by the tool should
match those roles. For example, only the moderator should be able to set up a meeting and
add or remove participants. The tool should also be capable of supporting every stage of
the inspection from start to finish. Although inspection is a well-defined process, which can
be rigorously enforced by automation, the inspection tool should also be flexible enough to
allow the process to be tailored to the exact requirements of each development team. For
example, during a Gilb-type inspection, the inspectors search for faults during individual
preparation (Gilb and Graham, 1993), while during a Fagan inspection fault-finding is left
until the inspection meeting (Fagan, 1976). The tool should be capable of enforcing either
process, depending on that in use by the development team.

The first stage the tool should support is planning, usually involving only the moderator.
The planning stage would include entering the inspection participants and assigning their
roles, as well as preparing the documents for inspection. Such preparation may involve
running defect detection tools on the document, or else successful runs with these tools may
be entry criteria for the inspection. If the defect detection tools are run during the planning
stage of inspection, then any items found should be cast as comments for inspectors to
review during the preparation stage. When the inspection has been set up, the moderator
can then send invitations to the inspection participants, usually by electronic mail.

On commencing the overview, the documents used during the inspection are usually
distributed, but in an on-line inspection, this is no longer necessary. The overview is also
used as an introduction to the material, but as Gilb and Graham state, such a meeting (called
a kickoff meeting in their terminology) is not always necessary (Gilb and Graham, 1993).
However, the overview can be a convenient time to provide guidance on expected defects
in the document and to set inspection targets. Although this material may be distributed
electronically, it is perhaps useful to hold a meeting to ensure team morale is high. Even
though our intention is to automate the inspection process, we should still keep any part of
the manual process which is to our benefit.

5.3. Individual Preparation

A basic requirement is that the tool should allow the inspection of an on-line version of the
document. This facility should be available for any type of document from source code and
plain English text to dataflow diagrams and object diagrams. There should be some means
of cross-referencing both within a document and across multiple documents, for example
to show all instances of the use of a variable or abbreviation. There should be a means for
creating annotations which are linked to the part of the document to which they refer. This
may be a line or zone of text or a component of a diagram. These annotations should be
capable of being given a type, indicating the purpose of that annotation or the type of fault
which it describes, thereby giving more detailed metrics on the types of defects found.

Checklists or other defect detection aids used must be available on-line. Checklists should
allow each item to be marked as complete and the tool should be able to report usage to

27

www.manaraa.com

212 MACDONALD ET AL

provide feedback on their effectiveness. Similarly, any standards that apply to the document
should be available on-line for consultation.

5.4. The Inspection Meeting

When each inspector has finished individual preparation, the inspection moves on to the
group meeting, where potential defects are discussed and their disposition recorded. These
defects are those found during individual preparation, and therefore a fundamental feature
of the tool is for each inspector to be able to call up previously prepared comments and
bring them to the attention of all participants. This is usually achieved by opening a window
containing the text of the comment on each inspector's screen. The team can then proceed
to discuss that comment.

Computer mediated interaction is an opportunity to assist in maintaining the meeting
structure. Although the inspection meeting has a well-defined structure, it is easy for the
meeting to stray from the agenda, especially with an ineffective moderator. The computer
may be able to help the moderator by providing cues on how well the meeting is going. For
example, if no defects have been recorded for several minutes, it may be that the inspection
team are spending too much time on discussion. The computer can hint to the moderator
that the meeting should move on. Similarly, lack of contribution from an inspector may be
brought to the attention of the moderator, who may then try to encourage that participant.

The output from the meeting consists of a list of defects which the inspection team regard
as existing in the document. This list is compiled by the recorder. The tool can assist
the recorder in several ways. When an inspector proposes a comment at the meeting, the
recorder should be given special controls to allow the comment to be classified for type,
class and severity.

The group meeting is considered to be an important part of the inspection process as the
work done by the group can be greater than the sum of the contributions from individuals.
One direct result is the finding of new defects at the meeting, but there are other benefits,
including the education of new inspectors. At the same time, the group meeting process can
also have adverse affects on the outcome of the meeting, resulting in a loss of productivity,
which can be directly measured as a lower number of reported defects, as reported by Votta
(1993). One aim of automating the inspection process is to improve or maintain the gains
while eliminating or reducing the losses. The sources of meeting gains and losses include
those described by Nunamaker et ai. (1991), but we describe them with specific reference
to an inspection meeting. Additionally, because an inspection meeting is well-structured
with a well-defined agenda, many of their points concerning task and process structure are
of little relevance and these are omitted.

5.4.1. Gains from Inspection Meetings

There are at least five benefits that may be gained with a group meeting. The most important
benefit where software inspection is concerned is that a group can provide a more objective
evaluation of an idea (Nunamaker et aI., 1991). This manifests itself in an increased ability

28

www.manaraa.com

AUTOMATING THE SOFTWARE INSPECTION PROCESS 213

to detect flaws. Incorrect suggestions tend to be rejected by a participant other than the
one who made the original suggestion, as intimated by Shaw (1971). Shaw also provides
evidence that overall group judgement is superior to that of the average participant. Also,
there is the much quoted synergy (Nunamakeret aI., 1991), which come from several people
having access to each others information. This information sharing may allow one person
to generate an idea which the owner of the information could not. In a similar vein, working
in a group can produce more stimulation for each individual, as the desire to be seen to
do well can motivate an individual. This can be seen during an inspection as a desire to
find more defects than the other team members. Another gain comes from the fact that
the group as a whole has more information than any single member, which can lead to
producing more and better solutions to any given problem (Shaw, 1971). Group work also
provides an opportunity to coach more inexperienced individuals. This is essential for such
highly skilled roles as the moderator. By including trainees in the meeting, they can imitate
and reproduce the skills of the more experienced participants.

5.4.2. Losses from Inspection Meetings

The first meeting loss comes from free riding, where a participant may rely on others to
perform the task (Nunamaker et aI., 1991). In a software inspection, this manifests itself
through an insufficiently prepared inspector attending the meeting and being unable to
contribute. When individual preparation is performed with an inspection tool, the tool can
be used to track indicators of inspector effort such as the amount of document coverage
achieved, amount of time spent in preparation and number of defects found. The moderator
can use this information to exclude such individuals from the meeting, encourage them to
invest more effort, or in extreme cases postpone the meeting until the inspector has prepared
sufficiently.

Production blocking is another potential factor (Nunamaker et al., 1991). It is composed
of three related problems. Attenuation blocking occurs when a participant has a comment to
contribute but cannot do so and forgets or suppresses it. Attention blocking is the inability
to think of new comments by having to concentrate on listening to others. Concentration
blocking occurs when participants concentrate on remembering commments instead of
thinking of new comments. These blocking effects are less relevant to the highly structured
inspection meeting than they are to a more general unstructured meeting, because if the
inspectors have prepared well, the meeting will simply consist of voting on and logging each
issue with the minimum of discussion. However, an inspection tool can provide several
important features which can help reduce these effects. Attenuation blocking can typically
be reduced by the document annotation facility, which allows the inspector to make a
permanent record ofthe comment and bring it to everyone's attention. It is also reduced by
having parallel channels of communication. Attention blocking is less of an issue if most of
the defects discussed at the meeting are found beforehand, such as happens in a Gilb-style
inspection (Gilb and Graham, 1993), because if more than one inspector finds the defect,
there is an opportunity for the non-proposing inspectors to reflect further on the document.
Concentration blocking is reduced if the discussion is held electronically, as there is a

29

www.manaraa.com

214 MACDONALD ET AL

permanent record of the discussion which can be viewed later. This electronic record can
also reduce another possible loss where participants fail to remember the discussion.

Conformance pressure reduces a participants ability to be critical of another's comments.
A tool supported inspection can easily overcome this by providing an anonymous voting
mechanism. Each inspector can then feel able to vote against a comment without fear of
reprisal or any other ill feeling. Air time fragmentation occurs in a traditional meeting as
discussion must proceed serially, with one participant speaking at a time. An inspection
support tool can reduce this fragmentation by allowing parallel communication, not only
by speech but also by message sending and gesticulation, such as pointing with a cursor or
highlighting text.

5.4.3. Discussion Support

Discussion can be facilitated in several ways. The simplest method is to limit the inspection
to a single room to allow normal discussion. The tool would then allow each inspector
to propose comments, which are then discussed and the outcome recorded by the scribe.
This is the approach used in ICICLE (Brothers et aI., 1990; Sembugamoorthy and Brothers,
1990). Again, there should be support for recording the comments since this is one ofthe
most time-consuming tasks that has to be performed during the inspection meeting, as well
as being error-prone. For this type of meeting, the environment is also important. Each
inspector should have easy access to a workstation, yet the machines should not dominate the
meeting, otherwise the effectiveness of a face-to- face meeting may be lost. The workstations
should be arranged around a table in a traditional meeting layout. The meeting room may
also have other traditional meeting aids, such as a whiteboard or projector.

If it is impractical to limit the inspection to a same-time, same-place format, then dis
tributed meetings may be held, that is with inspectors sited in disparate locations. In addition
to the tool being able to support such distribution, usually achieved by logging in to remote
machines, there must be some means of communication between the inspectors. The least
sophisticated method, in terms of integration with the inspection support tool, is videocon
ferencing, where audio and video discussion channels are available while the meeting is
conducted. Videoconferencing can conceivably be added to any existing inspection tool
with little or no work. This method can, of course, be used with a non-computer supported
(paper-based) inspection.

The next level of support which is integrated with the inspection tool is some form of
discussion client, like that found in Scrutiny (Gintell et aI., 1993). This type of discussion
mechanism simply allows participants to post text comments to the meeting in general.
Any participant can then respond with reference to the original comment. The posting
of comments is near instantaneous, allowing almost real time discussions to be held. A
discussion client may be used in parallel with videoconferencing software to provide several
paths of communication, reducing attenuation blocking.

The most sophisticated form of support involves integrating the workspace (i.e., the
document under inspection and the supporting material) with some form of interaction
support. One example of this is described by Ishii et al. (1994), who demonstrate several
prototype collaboration systems, which combine a shared workspace with visual interaction

30

www.manaraa.com

AUTOMATING THE SOFTWARE INSPECTION PROCESS 215

between the participants. One particular prototype provides distributed use of graphics
software for discussing diagrams. Each participant is seated at a large clear board. Onto
this board are projected the image from a local computer and the image from the other
participant's computer, which combine into a shared workspace. This workspace is overlaid
on to a facial image of the other participant. Each participant also has an electronic pen
which can be used to annotate this workspace. This arrangement provides a highly usable
interaction system, aided by the ability to see the other participant. Even though the system
is limited to only two participants, there are important features which could be applied to
providing similar support for an inspection meeting. One obvious benefit of this system is
the ability to support annotation of diagrams, and it follows that text can also be used in
the shared workspace. This addresses one of the fundamental requirements we stated at the
beginning. Another feature which is useful in an inspection meeting is the use of electronic
pens to allow document features to be highlighted, allowing attention to be directed to
specific areas of the document. It may be argued that such a pointing device is more
usable than a mouse. Such pens could also be used to annotate a page with comments by
storing these highlight marks with the document. This type of computer supported meeting
environment probably represents the ideal solution, however the hardware required is not
common. Currently, high-end PCs and workstations are widely available and in the interim
it may be more profitable to make the best of these machines rather then designing for a
technology which may not have such a high acceptance. We look forward to an era when
every company or large institution will have a computer supported meeting room.

5.4.4. Asynchronous Inspection Meetings

An alternative to holding an inspection meeting is to employ an asynchronous inspection
method. Such a method does not rely on being able to have all participants available at
one time for a discussion. Instead, the inspection proceeds by inspectors creating publicly
accessible comments on the document under inspection. These comments can themselves
be commented on by other inspectors, allowing a discussion to take place much as happens in
an electronic news group. In addition, it is possible to provide a mechanism for voting on the
status of a comment. An example of such a review method is FfArm (Johnson and Tjahjono,
1993). An asynchronous inspection is a credible alternative to a synchronous meeting as it
can remove many of the meeting losses described. For example, asynchronous discussion
increases parallelism in the process, as multiple threads of discussion can continue at the
same time. This also reduces production blocking as inspectors are allowed to concurrently
present their comments. The discussion system also provides a meeting memory, allowing
inspectors to review the discussion so far and make an appropriate comment. In addition
to reducing potential loss factors, asynchronous inspection preserves the gains achieved
through involving several people in the defect-finding process. The group as a whole still
has more information than any single participant and the group is more capable of spotting
defects in ideas. There is also a good learning environment in watching these discussions
progress, with the trainee able to follow such discussions at their own pace. Group synergy
and stimulation is also present. However, an asynchronous meeting is usually followed
up with a face-to-face meeting to resolve any remaining topics (Johnson and Tjahjono,

31

www.manaraa.com

216 l\IACDONALD ET AL

1993). This meeting will still suffer from the problems described before. Nevertheless,
since asynchronous meetings are a feasible alternative to a traditional meeting, we feel that
an inspection support tool should provide both modes of meeting.

5.5. Follow-up Stage

Whichever meeting format is chosen, when the meeting is complete the producer must
make changes to the document to address any defects found. There are two possible ways
in which computer support can be used here. First of all, given an electronic defect list, the
producer should be able to mark a response to each defect, indicating if the document was
changed to take account of the defect, or if unchanged then the reason why should be stated.
Secondly, the change should be implemented using a change control tool integrated with the
inspection support tool. This allows changes to be related to the inspection which suggested
them, allowing improved defect tracking and better evaluation of both the inspection process
and the software development process.

5.6. Metrics Collection

Data from the inspection process is an important feedback to help improve the software
development process. For this reason, a vital area of computer assistance is in producing
metrics from the inspection. The data from which these metrics are generated is traditionally
collected by hand. Not only is this time-consuming, with the duty usually falling to the
recorder, it is also very error-prone. Automated collection of this data removes both these
problems and also provides more finely-grained data. For example, an inspection tool can
record the amount of time spent in preparation by each inspector, as well the amount of
the document covered. When this data is coupled with the number of defects found, it is
possible to set guidelines on the optimal amount of time which should be used for inspecting
a document of a similar type.

Further use can be made of metrics to help improve upstream processes. A large number
of occurrences of a certain type of defect may indicate a weak point in the development
process. By making the developers aware of the defect they can take steps to improve the
process at the point where the defect is injected into the document.

6. Conclusions

Inspection is believed to be the most cost-effective technique for finding defects in docu
ments produced during the software Iifecycle. However, it has been found to be difficult to
implement and is labour intensive. It is therefore a prime target for computer support. This
paper has described current approaches to computer support to assist software inspection.
While these approaches tackle some of the main issues in supporting inspection, there are
areas which have been neglected. One example is the lack of support for diagrams, others
include sparse distributed meeting support and lack of integration with existing CASE tools.

32

www.manaraa.com

AUTO}'IATING THE SOFTWARE INSPECTION PROCESS 217

With such deficiencies in mind, we have presented an informal specification of a well
featured inspection support tool. First of all, the system should model all the roles of the
inspection participants, with the features of the tool available to each participant dependent
on their role. During the planning stage, the tool can help the moderator select the documents
to be inspected, invite participants and run any required defect finding tools. For individual
preparation, there should be support for browsing and annotation of any type of document
and cross-referencing both within and between documents. The system is also required to
support the use of checklists, as well as provide any relevant standards. For the inspection
meeting, we require the system to support three meeting types. In both same-time, same
place and same-time, different-place meetings, a minimum requirement for the tool is to
provide facilities for proposing and voting on defects. If the meeting is held in a distributed
fashion then it is also necessary to provide some form of discussion support, either using
a messaging system or through videoconferencing. There is also much scope to make use
of more advanced distributed co-operative work systems. The third type of meeting which
can be supported is an asynchronous meeting (either same-place or different-place). This
can be facilitated by allowing threads of discussion to be maintained through a comment
recording system. When the meeting is complete, the tool should provide support to the
author when making the required changes to the document by recording which defects have
been addressed and which have not. There is also scope for integration with change control
tools for this phase. Finally, metric gathering throughout the inspection is another essential
requirement. Metrics gathered will typically include quantities of defects found and time
spent executing the inspection. These metrics can then be used to fine-tune the inspection
process.

This list of requirements is derived from features found to be useful in currently available
inspection tools, along with facilities required in an electronic meeting support system. It
also takes into account some weaknesses in currently available tools and our own experi
ence with several of these tools. However, it is important to realise that such features must
be evaluated for suitability before their inclusion in an inspection support tool is deemed
essential. This evaluation may be guite complex as there are many interdependencies be
tween features that must be accounted for, precluding the evaluation offeatures in isolation.
Even given these difficulties, we feel that all these areas must be addressed for a computer
assisted inspection to provide substantial gains over a manual inspection. Such gains are
the rationale behind our desire to automate the inspection process, yet due to the lack of
some key features, the current generation of inspection support tools may not be capable of
providing these gains. As far as we are aware, there is no definitive study on the effective
ness of manual inspection in comparison with tool-supported inspection. To this end, our
future research lies in implementing a prototype to evaluate the features described.

Acknowledgments

We are extremely grateful to those who provided us with versions of their inspection support
tools, in particular Gerard Memmi of Bull HN Information Systems, Inc. U.S. Applied Re
search Laboratory, who supplied us with Scrutiny, and Eric Jung of Bell Communications
Research, who supplied us with ICICLE. We also thank the authors ofCSRS, who have made

33

www.manaraa.com

218 MACDONALD ET AL

a version publicly available, details of which can be found athttp://www . ics . hawai i . edul

-csdl/egret/release-notes.html.

References

Ackerman, A. F., Buchwald. L. S., and Lewski, F. H. 1989. "Software Inspections: An Effective Verification
Process," IEEE Software, (6)3:31-36.

Brothers, L., Sembugamoorthy, V. and Muller, M. 1990. "ICICLE: Groupware for Code Inspections," In Proceed
ings of the 1990 ACM Conference on Computer Supported Cooperative Work, ACM. October, pp. 169-181.

Doolan, E. P. 1992. "Experience with Fagan's Inspection Method," Software - Practice and Experience, (22)2: 173-
182.

Fagan, M. E. 1976. "Design and Code Inspections to Reduce Errors in Program Development," IBM System
Journal, (15)3:182-211.

Fagan, M. E. 1986. "Advances in Software Inspection," IEEE Transactions on Software Engineering, (12)7:744-
751.

Gilb,T. and Graham, D. 1993 Software Inspection. Addison-Wesley.
Gintell, J. w., Arnold, J., Houde, M., Kruszelnicki, J., McKenney, R. and Memmi, G. 1993. "Scrutiny: A Collab

orative Inspection and Review System," In Proceedings of the 4th European Software Engineering Coriference.
Humphrey, W. S. 1989. Managing the Software Process, Addison-Wesley,
Ishii, H., Kobayashi, M. and Arita, K. 1994. "Iterative Design of Seamless Collaboration Media," Communications

of the ACM, (37)8:83-97.
Johnson, P. and Tjahjono, D. 1993. "CSRS Users Guide," Technical Report ICS-TR-93-16, Department of

Information and Computer Sciences, University of Hawaii.
Johnson, P. 1994a. "An Instrumented Approach to Improving Software Quality Through Formal Technical Re

view," In Proceedings of the 16th International Conference on Software Engineering, May.
Johnson, P. 1994b. "Supporting Technology Transfer of Forrnal Technical Review Through a Computer Supported

Collaborative Review System," In Proceedings of the 16th International Conference on Software Quality.
Knight, J. C. and Meyers, E. A. 1991. "Phased Inspections and their Implementation," Software Engineering

Notes, (16)3:29-35.
Knight, J. C. and Meyers, E. A. 1993. "An Improved Inspection Technique," Communications of the ACM,

(11)11:51-61.
Macdonald, F. and Miller, J. 1995 "Modelling Software Inspection Methods for the Application of Tool Support,"

Technical Report RR -95-195 [EFoCS-16-95], Department of Computer Science, University of Strathclyde.
Mashayekhi, v., Drake, J. M., Tsai. W. 1. and Reidl, J. 1993. "Distributed, Collaborative Software Inspection,"

IEEE Software, (10)5:66-75.
Mashayekhi, v., Feulner, C. and Reidl, J. 1994. "CAIS: Collaborative Asynchronous Inspection of Software," In

Proceedings of the 2nd ACM SIGSOFT Symposium on the Foundations of Software Engineering, pp. 21-34.
Nunamaker, 1. F., Dennis, A. R., Valaich, J. S., Vogel, D. R. and George, J. F. 1991 "Electronic Meeting Systems

to Support Group Work," Communications of the ACM, (33)2:40-61.
Reidl, J., Mashayekhi, v., Schnepf, 1., Claypool, M., Frankowski, D. 1993. "SuiteSound - A System for Distributed

Collaborative Multimedia," IEEE Transactions on Knowledge and Data Engineering, (5)4:600-610.
Russell, G. W. 1991. "Experience with Inspections in Ultralarge-Scale Developments," IEEE Software, (8)1:25-

31.
Sembugamoorthy, V. and Brothers, L. 1990. "ICICLE: Intelligent Code Inspection in a C Language Environment,"

In Proceedings o{the 14th Annual Computer Software and Applications Conference, pp. 146-154.
Shaw, M. E. 1971. Group Dynamics: The Psychulogy ulSmall Group Behaviour, McGraw-Hill.
Votta, L. G. 1993. "Does Every Inspection Need a Meeting?" In Proceedings of the 1st ACM SIGSOFT Symposium

on the Foundations of Software Engineering, pp. 107-114.
Weller, E. F. 1993. "Lessons from Three Years of Inspection Data," IEEE Software, (10)5:38-45.

34

www.manaraa.com

Automated Software Engineering 3, 219-237 (1996)
© 1996 Kluwer Academic Publishers. Manufactured in The Netherlands.

Design by Framework Completion

DIPA YAN GANGOPADHYA Y dipayan@watson.ibm.com
IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598

SUBRAT A MITRA mitra@vnet.ibm.com
Application Development Technology Institute, IBM Software Solutions Division, 555 Bailey Avenue, San Jose,
CA 95141

Abstract. An object-oriented framework in essence defines an architecture for a family of applications or
subsystems in a given domain. Every application in the family obeys these architectural restrictions. Such
frameworks are typically delivered as collections of inter-dependent abstract classes, together with their con
crete subclasses. The abstract classes and their interdependencies implicitly realize the architecture. Devel
oping a new application reusing classes of a framework requires a thorough understanding of the framework
architecture.

We introduce an approach called "Design by Framework Completion", in which an exemplar (an executable
visual model for a minimal instantiation of the architecture) is used for documenting frameworks. We propose
exploration of exemplars as a means for learning the architecture, following which new applications can be built
by replacing selected pieces of the exemplar. For the piece to be replaced, the inheritance lattice around its class
provides the space of alternatives, one of these classes may be suitably adapted (say, by sub-classing) to create the
new replacement.

"Design by Framework Completion" proposes a paradigm shift when designing in presence of reusable com
ponents: It enables a much simpler "top-down" approach for creating applications, as opposed to the prevalent
"search for components and assemble them bottom-up" strategy. We believe that this paradigm shift is essen
tial because components can only be fitted together if they all obey the same architectural rules that govern the
framework.

Keywords: framework understanding, component-based software engineering, software reuse, architecture,
representation, executable model, learning by example

1. Introduction

This paper concerns reuse driven application development, in particular, in the presence
of object oriented application frameworks l . A framework (Deutsch, 1989) is designed
to cover a family of applications or subsystems in a given subject area (domain) and is
typically delivered as a collection of inter-dependent abstract classes (together with a set
of concrete classes specializing the abstract ones). The abstract classes together with their
dependencies (either structural, e.g., a container-contained relationship; or behavioral, such
as patterns of communication) in effect realize the architecture of the framework, while
concrete classes provide known variations, yet obeying the architectural rules. The task of
the application designer is to specialize the abstract classes and instantiate these specialized
(concrete) classes as objects to create a desired application (i.e., a new member of the

www.manaraa.com

220 GANGOPADHYA Y AND MITRA

application family). Since these new applications must necessarily obey the architectural
rules, the biggest challenge in this endeavor is to understand the architecture, without which
instances of the desired concrete classes cannot be made to work together.

Consider Graphical User Interface (GU!) as an application domain. A GU! framework
will stipulate that every window will consist of a menu bar, a tool palette, and a canvas
showing the contents of the window. Gaining competence with such a framework requires
understanding the responsibilities of the abstract classes, the communication protocols
among them, and the essential virtual operations left open for the subclasses to define.
In the GU! framework, for example, a "widget" is responsible for the shape that gets
rendered, while the canvas may determine the placement of the widget. Second, a canvas
has a container-contained (structural) relationship to its contained widgets. Third, when
a window is exposed, the canvas communicates this to the individual widgets, each of
which then redraws its shape-this exemplifies the behavioral relationship (i.e., the message
passing protocol) between the canvas and its widgets. Finally, the (abstract) widget class
may leave rendering of the actual shape up to its concrete subclasses (e.g., rectangle, etc.).
It is impossible and even meaningless to reuse the widget without understanding all of
these relationships. In other words, such relationships between the abstract classes, i.e.,
window, canvas, tool palette, menu bar and widget, define the essential architecture of all
GUI applications permissible using such a framework.

Most existing approaches for software reuse assume a bottom-up component assembly
paradigm see (Goldberg and Robson, 1984; Pietro-Diaz and Freeman, 1987; Gangopadhyay
and Helm, 1989; Maarek, 1990; Rollins and Wing, 1991). We believe that such approaches
would be successful only if the components under consideration are more or less self
contained (such as large software modules), and where one does not have to modify them
for reuse. Some of these existing approaches have also been used in situations of framework
based reuse, where, they focus on finding and selecting a class at a time out of a framework
library, using various techniques for browsing and search, such as, specification based
retrieval schemes, information retrieval based on documentation, or some sort of faceted
classification. All of these techniques focus on one class at a time rather than on the
inherent architecture behind the ensemble of classes. In short, they treat frameworks just
like any other class library. Thus, the unaided reuser ends up spending an enormous
amount of time trying to select and assemble architecturally compatible sets of components,
either by trial and error or by chasing source-code of the method definitions and reading
informal class-by-class documentation. Fitting components together in a bottom-up fashion
is thus as hard as solving a Jigsaw puzzle! However, since puzzle pieces are made to
fit an outline, why not start with the outline itself? The above intuition is depicted in
figure 1.

In this paper, we argue that a paradigm shift is needed-instead of constructing applica
tions bottom-up by assembling fine-grained components, one ought to apply the "Design
by Framework Completion" approach, in which a new application is constructed top-down
by understanding and adapting an example application. For example, if one is interested
in constructing a graphical editor, it makes much more sense to adapt an existing one,
rather than to create one from scratch by assembling pushbuttons, scroll bars, menus, and so
forth. In other words, we are proposing creation of new instances of the jigsaw puzzle by

36

www.manaraa.com

DESIGN BY FRAMEWORK COMPLETION 221

(b)

Figure 1. (a) Bottom-up assembly: Putting pieces together without knowing the architecture is like solving the
jigsaw puzzle from scratch. (b) Given the outline pattern, the puzzle is easy to solve, as we know what piece could
fill which slot of the pattern.

replacing pieces from a given and completed puzzle, as shown in figure 2. For frameworks,
the architecture (an abstract entity) is like the jigsaw outline, while the example application
is the given (complete) puzzle, which instantiates the abstract architecture.

In the "Design by Framework Completion" approach we use an exemplar as a executable
visual model for a minimal instantiation of the architecture of a framework, and propose
exploration of exemplars as a means for architecture understanding. Following such explo
ration, new applications can be built by replacing selected pieces of the exemplar. For each
selected piece, the inheritance lattice around its class provides the space of alternatives.
The reuser may either use one of these classes directly, or could suitably adapt (say, by
sub-classing) one of them to create a new replacement. The steps may be repeated until the
reuser is satisfied with the modified application.

An exemplar is an executable visual model consisting of instances of concrete classes
together with explicit representation of their collaborations. For each abstract class in the
framework, at least one of its concrete subclasses must be instantiated in the exemplar.
Therefore, the number of elements in an exemplar is of the order of the number of abstract
classes in the framework. Since even large frameworks have only a few abstract classes, a
small number of instances suffice in creating an exemplar.

Based on a visual executable modeling technology, called ObjChart (Gangopadhyay and
Mitra, 1993; Gangopadhyay et aI., 1993), we have created an environment (Gangopadhyay,
1994) to carry out model level exploration of exemplars. (The main constructs of this
modeling notation appear in figure 10, in the Appendix.) Model level exploration is unique
among the prevalent approaches to framework based development, which still emphasize
different class browsing and retrieval technologies, active cookbooks, or code tracing. Some
problems of bottom-up assembly of components have been mentioned independently by
Garlan et al. (1995). Detailed comparison is deferred until Section 3.

37

www.manaraa.com

222 GANGOPADHYAY AND MITRA

Figure 2. Design by framework completion.

2. Design by framework completion approach

In this section, the approach of Design by Framework Completion is illustrated via an
example of reusing a "Persistence Framework".

Assume that a reuser wants to design an application for persistently storing multi-media
compound documents on some storage device, in particular storing audio clippings. To
accomplish this, a Persistence Framework2 is chosen. The Persistence Framework is de
signed to store and retrieve any in-memory compound object into persistent storage de
vices. Over and above the usual mapping of in-memory structured data into byte-streams
in storage devices, the framework allows customization of clustering of related objects and
data-compression facilities.

We will go through a scenario where, in order to store lengthy audio-clippings, the reuser
will have to use specialized data-compression algorithms. The essential intellectual task
for the reuser is to pin-point the class in the framework where the specialization should take
place.

For the rest of this section, we will first briefly describe the example problem and
then take the reader through the steps of Design by Framework Completion approach via

38

www.manaraa.com

DESIGN BY FRAMEWORK COMPLETION 223

screen-shots. We deliberately keep the initial description of the framework brief, with the
hope that the reader will intuitively understand the details of the framework, just as a reuser
would do in the ObjChart Environment.

2.1. Problem description

The framework consists of a storage manager storing persistent copies of "complex objects".
Complex objects have nested structure, i.e., each object may be contained inside another
object. Essentially, compound documents are examples of such objects.

There are two design points in this framework:

I. In order to optimize storage and retrieval it provides clustering of related objects into
groups (called IOGroups). Whenever any persistent object in the group is written into I/O
media, so are the other objects in the group. However, because the optimal clustering for
retrieval efficiency depends upon the navigation pattern of specific application programs,
the specific clustering policy is left open for customization.

2. Structured data contained by any given in-memory object has to be linearized into
byte-streams before writing to I/O media. However, because the specific stored format
depends upon the object type (can range from just data structures to video-clippings
requiring compression), this linearization policy is also left open for customization.

For this example, we would assume that a reuser needs to create persistence services for
multi-media documents, which could contain audio clippings. In this case, the reuser may
need to have a compression algorithm to reduce the storage requirement. The task could
be accomplished by subclassing the formatter class to one which can do specialized data
compression. The problem for the reuser is: how does the reuser know where to make the
necessary changes?

Furthermore, to store the audio clippings, e.g., on a Digital Audio Tape device, it will be
necessary to have a special media object used by the IOGroup. Therefore, the reuser has to
subclass the IOGroup in concert. How does he figure out this dependency?

In the rest of the section, we describe how the reuser understands the architectural rela
tionships among the components of the framework.

2.2. (Step 1) Understanding the exemplar

The reuser starts by understanding an exemplar supplied with the framework. In this
case, the exemplar shows an working example of using the framework for storing an in
memory compound object (not multi-media) into a storage device. For understanding of
the exemplar, the reuser explores both the structure of the exemplar (static description) as
well as the dynamics. The visual model of the exemplar is described in ObjChart notations
(see discussion in Appendix for details on the ObjChart notation).

2.2.1. Exploring the structure. The overall static structure of the exemplar is shown
in figure 3, using the Object Model Diagram facility of ObjChart. From this figure, the

39

www.manaraa.com

224 GANGOPADHY A Y AND MITRA

Object Hodel View : persistentfwk
J

~. ,
!

~'..",.~IOOj=-m·· ,I

...........
daFormiltWlg

~. - - ~- ' I-

~H================~I~----======~==~ T

Figure 3. Exemplar for the persistence framework.

reuser sees first an overview of the constituent objects and their structural relationships.
By examining the comment text associated with each object, the reuser can understand the
responsibilities of each of them. For example, the comment text field for formatter is
shown in figure 4. The objects and their responsibilities are outlined below:

1. Composite is a complex object, containing other objects.
2. StorageManager stores and restores objects.
3. The sequence IoGroups is a collection of IOGroups managed by the storage manager.

Each IOGroup clusters a collection of persistent objects, called persistentObjects3 . In
particular, the object ioGroups[O] is an IOGroup in which composite is placed.

4. GroupAssigner determines the specific IOGroup to store a given object. This particular
assigner uses the policy of placing an object in the same IOGroup as the object's container.

5. Formatter looks up from a given object the data to be stored, linearizes it according to
its own algorithm and passes the linearized data to be written to a specific IOGroup.

In short, the Object Model Diagram of the exemplar depicts the structural relationships
among the objects. Structural relationships include association, which is shown in figure 3,
and containment, which can be seen by exploring the exemplar. Over and above these
structural relationships, the dynamic behavior of each object is modeled using a collection
of Event-Conditions-Actions (causal) rules or a Finite State Machine (FSM). (See the
Appendix for more details on the behavior description mechanism of ObjChart.)

40

www.manaraa.com

DESIGN BY FRAMEWORK COMPLETION 225

=1 Object Property : fonnatter

Name

I Itonnatter

Comment

I IRequest data from a given object;
Uneanze data and pass to an IOGroup

Type

I Itonnatteraass _~J ... j

I OK j cancel I

Figure 4. Property view of the fonnatter .

2.2.2. Exploring dynamic behavior. Having understood the roles and responsibility of
each object from the structural representation of an exemplar as discussed above, the reuser
now engages in understanding the dynamic collaborative relationships among these objects.
This is accomplished by interactive exploration of the executable model of the exemplar.
Such exploration includes observing the messaging interactions among objects on different
stimuli, thereby gaining perceptual understanding the collaborative relationships (Helm
et aI., 1990).

For the Persistence Framework, having browsed the static structure of the exemplar
model, the reuser determines a specific set of objects whose messaging interactions are of
interest. At this stage, the model can be executed interactively for its usage scenarios. For
this purpose, a pre-defined tryMe message is provided at the top level (persistentFwk).

When the user issues the tryMe message, ObjChart generates the resulting messages as
an Event Scenario Trace, as shown in figure 54. From the trace, the reuser can see the
following messaging interactions:

• When the storageManager gets the message storeObj to store a specific object, it asks
the attached groupAssigner to get an IOGroup. When the storage manager receives
IOGroup information (through the reportGroup message), it requests the corresponding
group (in this case ioGroups[O]) to store the object.

• A group, when asked to place an object into persistent store, sends the requestformatObj
to the attached formatter to linearize the data of the object.

• The formatter asks the object to report its attributes to be made persistent, using the
reportAttribs message. When an object reports its attributes (using the attribsAre mes
sage), formatter linearizes the attribute values into a data stream which is passed to the
IOGroup (ioGroup[O]) to write into a persistent object.

• When a group receives formatted data (through the message writePObj), it sets up
a new persistentObject (in this case, persistentObjects[l]) and asks this persistent

41

www.manaraa.com

226 GANGOPADHYA Y AND MITRA

~ - --
Event Scenario View I I!

[It ~t

1 ___ :11: , __ 1 - · ,, ·1
_ ... r _."11 ___ ", 11

~
J "_ I

" _
! ""'- fannalOllil -- I .. -

-""" -- I
:

~ ---- I

......... -
.. I I,~

I::J I 'r

Figure 5. Event scenario trace for the persistence framework.

object to record the data; it also sends the donePlacing message to the storage
manager .

• The persistentObject[l], on receipt of recordData, stores the linearized stream .
• Once its data has been written to persistent store, the storage manager sends an acknowl

edgement (doneStoring) to the object. At this point the object stores the HId" of the
IOGroup in which its data got saved.

2.3. (Step 2) Selecting the object to be replaced

Once familiar with the overall structure and behavior of the exemplar, the· reuser decides
on the objects of the exemplar that need to be changed to fit the requirements.

For the Persistence Framework, the reuser would want to examine the formatter object
in more detail. On examining the causal rule for attribsAre (as shown in figure 6) in the
FSM of the formatter it becomes evident that the bulk of the formatting is done by the
doFormatting operation.

2.4. (Step 3) Finding alternatives from the class lattice

For each object selected in the previous step, the reuser goes to its class and explores the
class lattice (inheritance hierarchy) around this class. The class lattice provides the space
of alternatives to choose from. If there is already a class to fit the purpose, the job is done.
Otherwise, the reuser has to embark on creating a new class.

For the example at hand, it would be the next logical step for the reuser to try and replace
the simple formatter with one which linearizes and compresses the data. To find a suitable

42

www.manaraa.com

DESIGN BY FRAMEWORK COMPLETION

.. ~~~_J~.-., . ~.. . ~ ," ..
File Edl. Window

~nt U .;. ····:.::.::=td,·····::· "'"IO-b'-"-lttrlb- sIIn(- AlI- 'L-G-) --------,

- . : - ' ""-,,

0lIl "'~ "'~(AUlt.G)
ci ~(~:.~,

hi -

CondftJons

Aatons

I :G«writtPO'XO'~Str ... ",)

OK

Figure 6. Finite state machine of the formatter with a causal rule.

r Cancel

.1.

-'"

227

fonnatter, the reuser first looks up the class name of the formatter object from its property
window (figure 4) and locates the class (formatterClass) in the Class Model Diagram5

(figure 7) for the framework. In order to find a fonnatter class with data compression
capability, the reuser can now browse the classes in the inheritance lattice rooted at the
abstract superclass (formatterAbstractClass) of the formatterClass. In this example,
indeed the formatterNCompressionClass will do the job.

Notice that, in our approach, since the user selects the desired object that has to be
replaced, and since the object already has class infonnation, finding alternative classes is
simple; much more so than having to browse through a huge collection of classes.

2.5. (Step 4) Adaptation

If a class with the desired properties does not exist in the class-lattice, a new class can be
created by subclassing an existing one and providing new methods, etc. The desired class is
then instantiated as an object to replace the corresponding one selected in the step entitled
"Selecting the Object to be Replaced".

For our example, the concrete class formatterNCompressClass is instantiated in the
object model diagram, i.e., the exemplar, and the new instance replaces the old format
ter. At this point, the reuser has the new application, which can be immediately executed
to his satisfaction. Thus, the reuser has accomplished "Design by Framework Comple
tion"!

In order to write persistent objects into Digital Audio Tape device, the reuser can subclass
a IOMedia class (not described in this paper) of the framework. The approach to identify
the IOMedia class as the one to subclass from, can be achieved by the same steps described
in the preceding sections.

43

www.manaraa.com

228 GANGOPADHYAY AND MITRA

Class Hodel View: ersi stentfwk

-.c1a.. 1nItt.

... I························ · ·························

•

'-00; _ --
-.

-.... -

....,

g

Figure 7. Class diagram for the persistence framework.

2.6. Summary

The preceding example illustrated our approach. Instead of trying to compose compo
nents bottom-up, "Design by Framework Completion" encourages a top-down scheme. The
exemplar model shows statically the essential objects and their dependencies, and therefore
provides a "footprint" of the architecture of the framework. Furthermore, the reuser not
only understands the static interconnections between objects of the exemplar, but also their
dynamics of messaging via execution of the model. The net result is that the reuser did
not have to search through a sea of classes to find the solution; exploration of the exemplar
naturally got the reuser focused on the formatter object. Thereafter, finding the suitable
class was a matter of manual browsing of a small section of the class lattice.

Based on the example of the Persistence Framework, our top-down solution to reuse
in presence of a framework starts with a representation scheme: Framework develop
ers provide exemplars, which are executable visual models that minimally instantiate the

44

www.manaraa.com

DESIGN BY FRAMEWORK COMPLETION 229

architecture of the framework. An exemplar consists of one or more instances of at least
one concrete class for each abstract class in the framework. The visual model will represent
the structural and behavioral relationships among these objects.

Once we have the representation, we use the following recipe to accomplish "Design by
Framework Completion":

1. Exploration. A reuser will first interactively explore the exemplar in order to understand
the responsibilities and relationships of the objects. Interactive exploration include
understanding of structural relationships and behavioral interactions.

2. Selection. Having understood how the exemplar works, the reuser decides on the objects
of the exemplar that need to be changed to fit his requirements.

3. Finding alternatives. The reuser has to find an alternative from the class-lattice around
the class of each object to be replaced. Either a ready-made solution is already available,
or a new alternative has to be created by adapting an existing class.

4. Adaptation. A new class can be created by subclassing an existing one and provid
ing new methods, etc. The new class is then instantiated as an object to replace the
corresponding one selected in step 2.

5. The steps 1-4 are repeated until the reuser is satisfied.

A few attempts has been made in aiding framework based development, using cookbooks,
for specific frameworks; for example (Schappert, 1994). Cookbooks aim to guide reusers
through specific tasks in a prescriptive manner. Using "wizards" (Soetarman, 1994) is an
other idea where a reuser is guided to fill in a template suited to a specific kind of application.
Our use of an exemplar is akin to adapting a template. However, we believe that our approach
of understanding through active exploration gives the reuser a fundamental understanding of
the relevant dependencies, which is not achievable through pre-defined or prescriptive steps.

3. Discussion

In this paper we have advocated the need for understanding the architecture of a framework
by interactive exploration as a necessary step towards framework based reuse, as opposed
to the prevalent notion of component by component, bottom-up integration. The essential
technical ingredients of our approach are .

• Learning by example,
• Explicit representation of the architecture, and
• Interactive exploration of the architecture.

In the remainder of this section, we compare our approach with others known in the literature.

3.1. Code tracing vs. executable models

Our approach enables architecture understanding by interactive exploration of a minimal
example, i.e., an exemplar. Learning something abstract via an example, is a well-known
learning technique in the AI and cognitive psychology (Fischer, 1987) literature.

45

www.manaraa.com

230 GANGOPADHY A Y AND MITRA

Naturally, one may argue that exploration of a code-level example program, in lieu of
executing the visual model of an exemplar, might be as effective. Schemes like "Active
Programming", (Rosson and Carroll, 1993) and "Program Visualization" (De Pauw et
aI., 1993), in fact, use code animation and tracing techniques and could be applied for
understanding a code-level example program.

The major drawback with code level animation approaches is that they have to instrument
"source code", which may not be readily available. Furthermore, the volume of trace that
is usually generated in such methods is overwhelming and therefore helps little in clearly
and succinctly understanding the behavioral protocols implicit in the abstract classes.

ObjChart models are at a higher level than code. For the Persistence Framework, for
example, the exemplar has 7 ObjChart objects abstracting several thousands of lines of code.
Furthermore, ObjChart objects in an exemplar can be attached to compiled code-level classes
(Gangopadhyay, 1994) of the framework, that is, execution mixes interpretation of visual
models with execution of dynamically loaded binaries. During exploration, such objects, on
receipt of a message, execute both its FSM and methods of the attached code-level classes.
Therefore, the traces are generated at the model level, even while executing real code.

Finally, there is an emerging consensus that design-reuse is more effective than code
reuse. Our approach of dealing with a framework at its architectural level is consistent with
this direction.

3.2. Accurate documentation offramework architecture

Our approach relies on interactively explorable documentation of framework architecture.
And the ObjChart notations with their precise executable semantics is the vehicle of accurate
documentation.

The key problem in framework architecture documentation is to accurately capture the
collaboration relationships among the classes, not just the description of classes and their
structural relationships. Unless the collaborations between the abstract classes are made
explicit, the reuser encounters a daunting task of inferring such collaborations by reading
source code. By using multi-party protocol objects as first-class entities (Helm et a!.,
1990; Gangopadhyay and Mitra, 1993), ObjChart notations capture such collaboration
relationships accurately. A protocol object has a port for each of the participant in the
protocol and a FSM which describe the progress of the protocol in reaction to receipt of the
messages through its ports. As an example, the FSM of the groupAssiguer object, shown
in the figure 8, depicts the encapsulated protocol between the participants storageMauager
and composite connected to its ports. See the appendix of this paper for a brief description
of the ObjChart constructs.

The community of framework developers are becoming increasingly aware of the need
for representing framework architecture (IBM Publication No ZI23-7461-0, 1995) and pat
terns implicit in the frameworks (Pree, 1994; Gamma et aI., 1994). Using a combination of
structural relationships (Rumbaugh et aI., 1991) amongst classes, and interaction diagrams
(Jacobson et aI., 1992) they attempt to document the architecture. However, their represen
tation schemes do not accurately capture the inter-component relationships. For example,
in the Gamma et al.'s (1994) representation of the Abstract Factory pattern, the so-called

46

www.manaraa.com

DESIGN BY FRAMEWORK COMPLETION

~

=-w
(wnl U
Ir~-qU-<-'~-' -"-"~'I-gn~Gro-u-~~O-~-) ---------------------J

CondrUom,

IJObl.GttS,",<w_.,.n~p~ P.GcWUibll,lu.("pld·.G,oup)]

AcUon,

l:requt'stor "<c rrportGroup(Group.ObJ)

OK Canerl -
--:::---- ---.--"""

Figure 8. Finite state machine of the group assigner.

!:::;~;,~~~;,;~~~;~;::::p

ConcreleFaclory2 ConcreteProduct2

Figure 9. ObjChart model of the abstract factory pattern.

231

"creational" links are hardwired between a concrete factory class and the corresponding
concrete product classes. Therefore, if one has to sub-class any of their concrete factories, it
is unclear which concrete products this factory sub-class is allowed to create. The essential
problem is the lack of support for inheritance among relationships. ObjChart, on the other
hand, treats relationships as first-class entities, and hence, inheritance among them is per
mitted. In the ObjChart model of the Abstract Factory, as shown in figure 9, the (abstract)
creation link between the abstract factory and the abstract product classes is represented as
a protocol object. The corresponding protocol between a concrete factory and its concrete
product classes simply inherits from the abstract one.

More importantly, given the informality of these representation schemes, they are not
amenable to tool-assisted interactive exploration of dynamics from multiple perspectives.
We believe that such exploration is absolutely essential for gaining insight into the archi
tecture. The English descriptions and static interaction diagrams, as used in these repre
sentation schemes, at best permit static documentation only. In ObjChart, we encapsulate
protocols themselves as reusable objects, and protocols are specified either by a set of

47

www.manaraa.com

232 GANGOPADHYA Y AND MITRA

interaction diagrams or, more precisely, by using FSMs. The ObjChart environment, being
capable of interpreting these interaction diagrams and FSM descriptions, allows simulation
and visualization of these protocol specifications from different perspectives.

3.3. Overhead for creating exemplars

Creating exemplars for existing frameworks introduces overheads beyond the actual code
base.' For example, pertinent questions may be: given the 2,000 or so classes of the Taligent
frameworks, how much effort is needed to create the necessary exemplars? How large does
each exemplar need to be?

First of all, experience shows that a good framework architecture has necessarily only
a few abstract classes, even with numerous concrete subclasses. Our exemplars need only
a single instance of any concrete subclass for each abstract class; therefore, only a few
elements suffice. An exemplar is skeletal, emphasizing the abstractions. Its purpose is
to provide an entry-point to the major abstractions and their many possible variations (the
concrete subclasses).

Second, creating exemplars is no more of an overhead than writing user-manuals for
frameworks, which the reusers need in any case. In fact, these exemplars are "live" docu
mentation since ObjChart is an executable specification language.

Finally, creating good frameworks require a substantial amount of design effort, since
frameworks have to be abstract and must also localize carefully the responsibilities in view
of future variations. As such, they can very well use an 00 analysis and design tool with
execution capability, such as ObjChart. That way, the models of frameworks would be
available naturally, without any extra effort. Thus, we are optimistic that new frameworks
will be provided with their visual models.

3.4. Deemphasizing the retrieval and browsing problem

Most existing approaches for software reuse emphasize the problem of finding a suitable
component fitting the need. They are extracting one component at a time. [Faceted classi
fication scheme (Pietro-Diaz and Freeman, 1987), class hierarchy browsers (Goldberg and
Robson, 1984), lexical affinity based information retrieval (Maarek, 1990), and specifica
tion of components as search keys (Gangopadhyay and Helm, 1989; Rollins and Wing,
1991) are examples.] However, there are a few major drawbacks with these approaches:

1. Reusing one component at a time implies that there is no support for understanding
(possibly hidden) dependencies between components. Often times, there may be subtle
dependencies (such as components which could only work in pairs) which gets in the
way of bottom-up reuse efforts starting with a component at a time.

2. Since the query issued by a reuser is matched against the component description provided
by the designer, vocabulary mismatch (i.e., the mismatch in the vocabulary used in the
query and the component descriptions) becomes a serious hindrance to the success of the
scheme. Empirical evidence shows that incorporation of synonym dictionaries does not
alleviate the problem. Even with faceted classification schemes with limited vocabulary,

48

www.manaraa.com

DESIGN BY FRAMEWORK COMPLETION 233

the problem lies still in establishing a shared understanding of the meanings of these
words.

3. Finally, even when we ignore the vocabulary mismatch problem, there arises a need to
ensure that the specification of the query must "match" that of some component from the
class library. Such specification subsumption are computationally hard and, in general,
undecidable.

Our approach solves the first problem. The reuser can get, rather easily, a complete
insight into the architecture of the entire family of applications covered by the framework, by
exploring an exemplar. As regarding the second problem, the selected component provides
the specification which gets used in finding alternatives from the component library (they
both use the designer's vocabulary), and the search is limited to only a small portion of the
class lattice. Therefore, vocabulary mismatch is not as severe as it would be for an arbitrary
query over the entire class library. Finally, an inheritance lattice by definition stipulates that
a subclass does at least as much as its superclass. Because in our "Design by Framework
Completion" approach alternatives are chosen from the inheritance lattice, the problem of
computing specification subsumption does not arise.

In essence, we believe that component retrieval is not the problem in reuse, but to fit them
together is the bigger issue (Gangopadhyay, 1991).

3.5. Design for enhanced reuse

We believe that the key to good framework design is explicit and localized representation
of the protocols between the components of the framework, rather than distributing such
protocols inside the method bodies of these components. Explicit representation enables
understanding while localization allows ease of refinement of the protocols themselves.

Our example of Section I, the model ofthe Persistence Framework (figure 3), uses two
such protocol objects, groupAssigner and formatter. They both localize important design
policies of the Persistence Framework. As a result, wide variation of the framework is
possible by refining these encapsulated policies.

The groupAssigner uses a policy by which an object is assigned to the same IOGroup as
its container (called parent in ObjChart terminology). This group assigner needs to mediate
between the object to be stored (to find its parent's IOGroup) and the storage manager. The
purpose of using a separate object is to encapsulate the policy, rather than burying it in
the store method of storageManager, such that this policy can be independently refined
should the reuser so desire. For example, in case of a quick word indexing over compound
documents, perhaps it is logical to store all the word objects starting with a given prefix
in a single IOGroup instead of storing them together with the paragraph objects (i.e., their
containers). The object groupAssigner is an example of a so-called collaboration object,
mediating between storageManager and the object to be stored.

Similarly, the linearization policy is encapsulated in another collaboration object, called
formatter. It looks up from a given object the data to be stored, linearizes it according
to its own algorithm, and passes the linearized data to be written to a specific IOGroup.
In fact, it leaves the linearization algorithm itself as a virtual operation to be overridden
by its concrete subclasses. The formatter participates in two interactions; it receives a

49

www.manaraa.com

234 GANGOPADHYA Y AND MITRA

!ormatObj message from some IOGroup for a specific object, in response to which it sends
a message to the object requesting its attributes and values that need to be stored. Whenever
an object sends a message with attributes and values to a formatter, the formatter linearizes
the collection using its own algorithm (by invoking its operation named doFormatting) and
sends the linearized stream back to the concerned IOGroup.

4. Conclusion and future work

In this paper we have argued that understanding the architecture is the key issue in reusing
frameworks. We have illustrated why class retrieval is, at best, a minor problem. We have
proposed that architecture can be better understood through interactive and tangible ex
ploration of an exemplar. This further enables the reuser to create a new application by
top-down customizationlrefinement of an exemplar, rather than searching through a vast
collection of fine-grained classes and composing them bottom-up.

In this paper we have outlined the "Design by Framework Completion" approach for
effective reuse of frameworks. There is a need to apply these techniques to different
framework libraries, to ensure that active exploration can indeed be used as an effective
means for understanding the architecture of a framework. Moreover, we foresee creating
effective exemplars as akin to creating good tutorials, and thus will require multi-disciplinary
cooperation among framework developers, technical writers and the human factors people.

The essential message of our work is that top-down completion of an instantiated architec
ture by (replacing and/or adapting) the available components is the only way to effectively
reuse software. Following (Gangopadhyay, 1991), we have argued that the main prob
lem of bottom-up component assembly is the incompatibility of architectural assumptions.
Similar observation has been reported independently by Garlan et al. (1995), even when
they had used fairly large-grain components. However, their recommended suggestions are
aimed at alleviating architecture mismatches, still within the style of bottom-up component
assembly. In contrast, Design by Framework Completion is a complete paradigm shift, by
using architectural information as the foundation for effecting reuse, rather than to start with
components and find if their architectural assumptions match. Not only do we represent
architecture, but we ensure that only architecturally compatible components (chosen from
the inheritance lattice) are used for completion. Moreover, by executing exemplars, we
provide an intuitive approach of learning the architecture by active visual exploration, a
form of "learning by example".

Our research has been performed in the context of object-oriented frameworks, because of
their wider availability. However, we believe that our findings and the approach outlined here
are equally well suited to reuse of non-OO components. Essentially, each class has the same
property as an encapsulated module (or component). The inheritance lattice, which is an
organization of classes based on commonality of semantics, can be viewed as a special case
of component classification schemes. In our reuse receipe, the only step with a dependency
on object-oriented frameworks is in the one entitled "finding alternatives", wherein we have
used the inheritance lattice, which could just as well be replaced by any classification scheme
mentioned before. We believe that such cross-fertilization of findings from the object
oriented community to general software reuse community will advance the state-of-the-art.

50

www.manaraa.com

DESIGN BY FRAMEWORK COMPLETION 235

Appendix: ObjChart Constructs

For completeness, we present an overview of the modeling constructs of ObjChart. The
visual notations for the ObjChart constructs are depicted in figure 10. Notice that this is
just a brief exposition; more details (for example, on the semantics, object structure, finite
state machines, etc.) appear in (Gangopadhyay and Mitra, 1993).

The central concept is that of an object. An object may be an instance of some class.
Classes implement types for objects. Objects can have attributes (data members), operations
and a collection of ports. Ports of objects are place-holders for potential collaborators;
collaborators can be connected to ports using connectors. Objects in ObjChart may be
composite; i.e., structurally, objects can be refined by adding subobjects. For example,
object is a subobject of composite in the discussion on Persistence Framework.

Behavioral descriptions of objects are provided using causal rules. A causal rule consists
of Event-Conditions-Actions tripple and defines a conditional response to an input stimulus.
The event is the stimulus, which causes the object to perform the actions, provided the
conditions hold. It may be convenient to partition causal rules based on enabling states, in
which case a finite state machine (FSM) is associated with an object. Usually, behavior is
initially defined abstractly using simple unconditional causal rules that define cross-object
interactions (i.e., the Object Interaction diagram). At a later stage, these causal rules are
further refined (say, by adding enabling state information, conditions, etc.) to provide precise
behavior for objects.

Over and above the simple structural constructs discussed so far, ObjChart allows proto
cols to be encapsulated as objects, thereby enabling the treatment of protocols as first-class

r------~-e;l

t=:r~=~~1
CIe .. Model eon.tructa r··········_··························· __ ··········· .. .

Attrlbuta -
•................... _ __ __ i

........ c::lb~.I~.r~I~~ .. ~ .. t.":'~

Finite Stele Machine Constructs

[-m=········~···············~~ont(CO_klnl=W f
! T Actions T:

! ~ ~ i
! E EventJ::uonJ E l
! N._ _ .. _1

Figure 10. Constructs of ObjChart.

51

www.manaraa.com

236 GANGOPADHYAY AND MITRA

entities (for example, the same structural and behavioral refinement principles can be ap
plied to protocols; also, protocols can be extended by adapting their classes, as done in
the Abstract Factory example). Protocols may be viewed as reusable entities, in which
the fixed part of a behavioral interaction is encapsulated in the protocol object, while the
variable parts are abstracted out using ports. Causal rules of the protocol object describes
the progress of the protocol in response to receipt of messages through its ports.

Finally, ObjChart has the Sequence construct which depicts an ordered collection of
elements of a given type.

The ObjChart-Builder (Gangopadhyay et al., 1993) allows interactive exploration of
ObjChart models. During execution, behavioral information stored in objects, by way
of causal rules, is used to produce a trace-diagram, which shows the actual messaging
interactions that occurred during the execution of the model. Such a trace, for the Persistence
Framework, has been discussed before, and shown in figure 5.

5. Acknowledgments

We would like to thank Oliver Horn of IBM Germany, and the referees for their comments.

Notes

I. Unless otherwise stated, we would use the word framework to mean an object -oriented framework.
2. The example framework has been adapted from the SOM Framework Library (IBM Publication No S246-

0108-00).
3. Note that the contained objects are not visible outside the container in the ObjChart representation. Thus,

the sequence persistentObjects is not visible at this level of the model. Similarly object, which is contained
within composite, is also not visible. Such hiding of the details is essential for examining a model abstractly.
In case further details is required, it is possible to descend into the structure by opening any container object,
at which point the contained objects become visible (see the Appendix and (Gangopadhyay and Mitra, 1993)
for details).

4. Notice that these scenario traces are generated from the behavior definition of the objects, specified by either
causal rules or FSMs; see the Appendix for further details.

5. The objects in figure 3 are instances ofthe classes shown in figure 7; for example, composite is an instance of
compositeClass, groupAssigner of grAssgnByParClass, storageManager is an instance of some concrete
subclass of storageMrgAbstract, which we have omitted for brevity, and so forth.

References

De Pauw, w., Helm, R., Kimelman, D., and Vlissides, 1. 1993. Visualizing the behavior of object-oriented systems.
In Proceedings of the Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA) 1993, ACM SIGPLAN Notices, 28(10):326-337.

Deutsch, L.P. 1989. Design reuse and frameworks in the smalltalk-80 system. T.1. Biggerstaff and A.1. Perlis
(Eds.), In Software Reusability, ACM Press, pp. 57-72.

Fischer, G. 1987. Cognitive view of reuse and redesign. IEEE Software, pp. 60-72.
Gamma, E., Helm, R., Johnson, R., and Vlissides, 1. 1994. Design patterns: Elements of reusable object-oriented

software, Addison-Wesley.
Gangopadhyay, D. and Helm, A.R. 1989. A model driven approach for the reuse of classes from domain specific

object-oriented class repositories. Research Report RC1451O, IBM Research Division.

52

www.manaraa.com

DESIGN BY FRAMEWORK COMPLETION 237

Gangopadhyay, D., Mitra, S., and Dhaliwal, S.S. 1993. ObjChart-builder: An environment for executing vi
sual object models. In Proceedings of the Eleventh International Conference and Exhibition of TOOLS USA
(Technology of Object-Oriented Languages and Systems).

Gangopadhyay, D. and Mitra, S. 1993. ObjChart: Tangible specification of reactive object behavior. In Proceedings
of the European Conference on Object Oriented Programming (ECOOP'93), 707:432-457 of Lecture Notes in
Computer Science.

Gangopadhyay, D. 1991. On tangible representation of compositions of software components. Position paper. In
Proceedings of 14th Minnowbrook Workshop on Software Engineering.

Gangopadhyay, D. 1994. ObjChart User Guide, IBM Internal Report.
Garlan, D., Allen, R., and Ockerbloom, J. 1995. Architectural mismatch or why it's hard to build systems out of

existing parts. In Proceedings of the International Conference in Software Engineering (ICSE-i7).
Goldberg, A. and Robson, D. 1984. SMALLTALK-80: The Language and Its Implementation, Addison-Wesley,

Chap. 17.
Helm, R., Holland, I.M., and Gangopadhyay, D. 1990. Contracts: Specifying behavioral compositions in object

oriented systems. In Proceedings of 00PSLA/ECOOP'90, ACM SIGPLAN Notices, 25(10): 169-180.
Jacobson, t, Christerson, M., Jonsson, P., and Overgaard, G. 1992. Object-oriented software engineering: A use

case driven approach, Addison-Wesley.
Maarek, YS. 1990. Indexing software components for reuse by using natural language documentation. In Pro-

ceedings of the Third Annual Workshop: Methods and Tools for Reuse.
Pietro-Diaz, R. and Freeman, P. 1987. Classifying software for reusability. IEEE Software.
Pree, W 1994. Designing with Patterns, Addison-Wesley Publication.
Rumbaugh, J., Blaha, M., Premeriani, W, Eddy, F., and Lorensen, W 1991. Object-oriented modeling and design,

Prentice-Hall.
Rollins, EJ. and Wing, J.M. 1991. Specifications as search keys for software libraries. In Proceedings of 8th

International Conference Logic Programming.
Rosson, M.B. and Carroll, I.M. Active programming strategies in reuse. In Proceedings of the European Coriference

on Object Oriented Programming (ECOOP'93), 707:4-20 of Lecture Notes in Computer Science.
Soetarman, B. 1994. Personal Communication.
Schappert, A. 1994. Demo at OOPSLA.
Introduction to OS/2 System Object Model, IBM Publication No. S246-0108-00.
Commonpoint Application System: Documented Samples, Publication No. ZI23-7461-0, 1995.

53

www.manaraa.com

Automated Software Engineering 3, 239-259 (1996)
© 1996 Kluwer Academic Publishers. Manufactured in The Netherlands.

Building an Organization-Specific Infrastructure
to Support CASE Tools

SCOTT HENNINGER scotth@cse.un1.edu
Department of Computer Science & Engineering, University of Nebraska-Lincoln, 115 Ferguson Hall. CC 0115

Abstract. CASE tools are notorious for forcing organizations to adapt to a standard development methodology.
The underlying assumption is that a universally applicable development method exists and it is up to the organization
to conform to that method. But software development is no longer a homogeneous field. As computers are
applied to an increasingly diverse set of applications, it is becoming increasingly important to understand the
different demands these domains place on the development process. Our solution to this dilemma is to create an
organization-wide development infrastructure based on accumulated experiences within application and technical
domains. The domain lifecyc1e formalizes a process for accumulating project experiences and creating domain
knowledge than can be used to increase product quality and improve development productivity. Supporting the
domain lifecyc1e eases development of software that has been developed previously in the organization, freeing
designers to concentrate on less well-known elements of an application.

Keywords: domain lifecyc1e, organizational learning, methodology, reuse, domain analysis, CASE adoption,
groupware

1. Adapting an organization to CASE tools

The promise of the CASE industry has been to improve software productivity and quality
through technological innovations aimed at automating parts of the development process.
While many have touted CASE technology as the tool that will revolutionize the software
development industry (Yourdon, 1992), these claims remain largely unfounded. The few
studies that have been attempted are either equivocal or contradictory, with some showing
a perception among developers that CASE improves productivity and quality (Norman
and Nunamaker, 1989), others showing some improvement in productivity and quality for
medium-scale programs (Granger and Pick, 1991), and others showing little or no effect
on productivity and quality (Card et aI., 1987). Studies have shown that introducing CASE
tools to an organization is tenuous at best, with organizations choosing to adopt CASE
tools in limited forms and abandoning much of the technology soon after its introduction
(Kemerer, 1992).

Part of the reason for this confusing state of affairs is that, in spite of the desire to create
universally applicable solutions, the same CASE tool applied to different development
contexts or different development organizations may yield entirely different results. CASE
tools are often coupled with specific development strategies and are often ill-suited for
development under different strategies (Vesssy et aI., 1992). For example, a CASE tool
supporting a traditional waterfall model might prohibit developers from going into design
and development stages before specification or requirement phases have been certified as

www.manaraa.com

240 HENNINGER

"finished" (Ramanathan and Sarkar, 1988). This will not work well in projects needing
one or more prototypes to flesh out system requirements and assess design risks (Boehm,
1988). While other design disciplines have come to recognize that proper tools must be
used for the job, research in the software engineering and CASE communities continue
to search for universal solutions to a complex and multi-faceted problem characterized
by different application domains (Curtis et aI., 1988), various design and implementation
strategies, numerous organizational styles, and user demands for high-level domain-specific
and easy-to-use software that achieves high levels of portability, modularity, and robustness
at increased cost effectiveness (Urban and Bobbie, 1994).

But universally applicable solutions do not exist, and organizations wishing to make an
investment in CASE are faced with a multi-dimensional assessment task. Not only must an
organization assess the quality of the CASE tools, it must also determine how well the tool
integrates with the existing computational environment and corporate infrastructure, how
well it supports specific development strategies, and the expressive power of the CASE tools
for the kinds of problems it will be used to solve. Hidden costs in the form of training and
learning to use the tools effectively, a process that can consume up to twice the actual pur
chase price of a CASE tool (Huff, 1992), can also have unforeseen and undesirable effects.
CASE tools that are incompatible with corporate development strategies and organizations
will mandate sweeping changes to the process of managing and developing software. These
tradeoffs need to be identified and analyzed to find the most effective CASE tool for a given
organization and types of development projects and strategies used by the organization.

1.1. Adapting CASE tools to an organization's development context

The approaches to integrating CASE tools into a development organization have essentially
followed two paths. The first is to impose a set of functionality and a prescribed development
process and let the organization adapt itself in order to make effective use of the tools. While
this eases the burden on CASE tool developers, it is often difficult to radically change
development practices in an organization, leading to CASE shelfware and adoption failures
(Kemerer, 1992). This solution also assumes that there exists a solution to "the" software
engineering problem (and the CASE vendor will argue hard that they've found that solution)
and it is simply a matter of getting organizations to adopt their practices accordingly. The
second approach is to provide a set of features that can be configured to meet a development
organization'S needs. This adds a necessary degree of flexibility, but still assumes that there
exist variants of a universal solution. To the extent that an organization's development needs
fit these pigeon holes, the tool is successful. But the dismal reports of CASE in practice
suggest that the pigeon holes don't exist or at least the right ones haven't been discovered.

The learning curve has long been recognized as a barrier to adoption (Kemerer, 1992).
Yet the CASE field is often criticized for only providing point solutions. A recent study
showed that out of 14 tools studied, most provided generation of header files, only 2 provided
full code generation, most had weak forms of consistency checking, none fully automated
document generation, and tools that were strong in one area were often weak in others
(Church and Matthews, 1995). If CASE tools mostly provide point solutions (such as
requirements engineering, database generation, etc.) and face a steep learning curve, then it

56

www.manaraa.com

CASE100LS 241

stands to reason that comprehensive solutions are even more complex with larger learning
curves.

The problem is that viewed in the abstract sense, software development (or software
engineering, if one prefers) is an intractable problem. While a single comprehensive CASE
solution would certainly be convenient, diversity is necessary to meet the needs of software
development in disparate application domains and technologies. Any single system meeting
all these diverse needs is beyond our capability to develop or understand software systems.
Viewed in this manner, point solutions will continue to be offered by CASE vendors for some
time to come. The means are therefore needed to manage the point solutions effectively to
ensure product quality throughout the development lifecycle.

Adopting CASE technology is therefore more complex than enforcing organizational
compliance to a methodology or providing customization tools. Information is needed on
when a CASE tool should be used, and how it should be employed to solve a specific
problem. This information is inherently organization-specific, as it involves the entire
development context, including expertise of the developers, application domains, hardware
used by developers and customers, organizational culture, and many other factors.

In this paper we propose an alternative to adopting CASE technology. As opposed to
adopting an organization to CASE solutions or providing superficial customizations, de
velopment organizations create an infrastructure within which CASE tools can be used
effectively. This approach involves the development and evolution of organization-specific
knowledge about how CASE tools are used most effectively within the organization's de
velopment context. Feedback from developers is used to extend CASE tools to meet the
specialized needs of the organization and help developers understand how the tools can
be used to solve specific problems. This approach recognizes the growing diversity of
user populations and the corresponding demands this diversity places on the development
process (Henninger and Lappala, 1994). There is no magical potion, no silver bullet, that
can be simply purchased to solve all development problems in a given organization. In
the same way that the Software Engineering Institute's Capability Maturity Model (CMM)
(Humphrey, 1989) advocates a continual improvement process, our approach advocates the
development of an infrastructure that is used to identify frequently occurring problem areas
where an organization can benefit from efforts to automate development within the domain.

2. An organizational framework for CASE tools

Existing CASE tools and existing development methodologies focus exclusively on the
project lifecycle with only incidental reference to previous development efforts, develop
ment infrastructure, and other organizational factors affecting the development process.
Methods are needed that codifies knowledge as it emerges in development organizations
into a form that can help make developing routine software more routine (Computer Science
and Technology Board, 1990). This knowledge is treated as a corporate asset that is used
as a basis for continual improvement of software products and the development process.
Software reuse is practiced throughout the development process through a methodology in
which design decisions are based on prior experiences. Software reuse and domain analysis
become the basis for designing software systems, not just an implementation technology.

57

www.manaraa.com

242 HENNINGER

Appropriate levels of formality is supported as an organization learns about the domains
their software is built around. We address these needs in a progression from individual
cases to domain-oriented design environments that formalize development knowledge and
artifacts. This progression defines a domain lifecy~le (Simos, 1988) in which the focus is
shifted from individual projects to recurring design problems within an organization.

2.1. An organizational learning approach to software development

An organizational learning approach to software development addresses these issues by
capturing project-related information during the creation of individual software products
(Henninger et aI., 1995). This information can then be disseminated to subsequent projects
or domain analysis efforts to provide experience-based knowledge of development issues
encountered at the organization. Given a repository of experiences with tools and methods,
new projects can match their characteristics to the characteristics of existing solutions.
These solutions provide knowledge about how successful a given method or tool was for
that kind of domain, provide how-to information for specific problems, identify potential
problems, etc. Information in the repository not only points to re-usable solutions and code,
but also suggests how novel problems can be approached by adapting similar problems, warn
of possible problems with solution methods, and help designers understand the boundaries
of a problem.

An organizational learning approach to software development uses an organization's
accumulated knowledge of the development process and application domains as the basis
for design. While the ultimate goal may be to develop automatic programming tools (Rich
and Waters, 1988), coalescing and analyzing the necessary knowledge to achieve this goal is
a difficult process that can only be accomplished in well-understood domains (Biggerstaff,
1992; Prieto-Dfaz, 1991). Intermediate methods are needed that can disseminate knowledge
as it is created in the organization so people can begin to build a culture based on success,
avoid duplicate efforts, and avoid repeating mistakes. These techniques provide information
relevant to local development practices that "you can't learn in school" (Terveen et aI., 1993),
such as custom languages, organization and project-specific programming conventions,
policies and guidelines concerning tool usage, development standards, individuals with
expertise in specific areas, and many others.

By this definition, domain knowledge does not necessarily need to be centered around a
common family of applications or a formal model (Arango, 1989), but a set of problems
within applications with recurring activities and/or work products. In fact, the most valuable
kind of knowledge can be characterized as "lessons learned"; mistakes and sub-optimal
solutions that developers don't want to repeat, tips and techniques for accomplishing specific
tasks, and methods that proved to be successful. The development process in general can
be refined and streamlined by identifying commonly occurring patterns, thereby reducing
the amount of duplicated effort and learning from the mistakes and successes of projects
with similar characteristics. The emphasis becomes one of systematically institutionalizing
knowledge as it is generated by people in the organization.

As the cases accumulate in the organization-wide repository, the knowledge contained in
the repository becomes increasingly tailored to the kinds of design problems that frequently

58

www.manaraa.com

CASE1DOLS

o issues
A reusable

L.:1 artifacts
.. value-added _ artifacts

o ;::::ines

.El_
!:Cl:. Domain ~ Analysl

Domain Abstractions

!
A----++--~-a

J *~Igncr

maNredomain

Domain-Specific
Design Environment.

.~
,6.c:- ... ---:~-==-.. -

Figure 1. Organizationalleaming support for the domain lifecycle.

243

occur in the organization. The repository therefore serves not ol)ly as a means to disseminate
design knowledge, but also helps an organization learn what does and does not work for
their development context. This is where we distinguish between organizational memory
systems that many have advocated (Walsh and Ungson, 1991) and our notion of organiza
tionallearning, where the emphasis is placed on learning from previous experiences. The
method also naturally incorporates an evolutionary, continuous, process of improvement
that evolves with the ever-changing development context. As developers in the organization
gain experience with problems in the domain, the domain evolves toward more formal and
higher quality representations, defining a lifecycle for problems with similar characteristics.

Figure 1 depicts how an organizational learning approach to software development sup
ports the domain Iifecyc\e. As frequently encountered problem domains mature from novel
problems to repeated problems to a fully mature domain, support is provided in increasing
levels of automation. CASE tools supporting the three main steps in the domain lifecyc\e
are identified:

• A Case-based repository collects experiences from individual projects, tool experiences,
and other artifacts generated to support the development infrastructure of the organiza
tion. Project experiences and design artifacts are collected through status reports, project
management, and design rationale that describes the problems that are addressed while
creating an application. Tool experiences are how-to advice and descriptions of prob
lems encountered while developers are using a tool to develop software. This provides
solutions to organization-specific problems that are not found in manuals. Reusable

59

www.manaraa.com

244 HENNINGER

artifacts can be in the form of procedures for approaching a problem (process models),
software modules, specifications, frameworks and architectures, requirement documents,
algorithms, designs, test suite, and other items generated in the course of a project.

• Domain abstractions are domain-specific models of design problems, including design
guidelines, value-added reusable artifacts, domain-specific handbooks, process models,
design checklists, and other forms of knowledge. Domain-specific knowledge is created
by a domain analyst refining knowledge contained in the case-based repository into forms
that are more generally applicable to problems frequently encountered in the organization.

• Domain specific design environments automate or provide knowledge-based support
for the development of systems within well-established domains. The environments are
created by tool designers using accumulated knowledge from the domain models and
reusable artifacts in the case-based repository.

These steps define increasing levels of automation and support mirroring the maturity of
the domains. As shown with the heavy arrows in figure 1, novel problems are supported by
searching for similar problems in a case-based repository of project and tool experiences.
The cases will contain information that is specific to the original project and may need work
to apply to the current context, but at least there are some prior experiences to help guide
design decisions. As activities are repeated, case-based technology is employed to identify
recurring development issues and support the process of generalizing from individual cases
to domain-specific abstractions. Using handbooks, guidelines, and domain models provides
a higher level of support because the knowledge has been processed by domain analysts
into a form that is applicable to general problems in the domain. As the domain matures,
tool designers can use the synthesized knowledge and components to construct design
environments that automate design and provide intelligent support for mature domains
repeatedly encountered in the organization.

2.2. Empirical work on organizational memory

We are currently engaged in a project that uses the "industry-as-laboratory" (Potts, 1993)
approach to explore the domain lifecyc1e in a technically sophisticated in-house software
development organization at Union Pacific Railroad (UPRR) with about 350 software de
velopers. We have systematically studied software development at UPRR with structured
interviews (Curtis et al., 1988), contextual inquiries (Holtzblatt and Jones, 1993), and diary
studies (Rieman, 1993). Through these studies we have collected extensive notes and hours
of video recorded information with an even mixture of developers and project managers.

Our foremost conclusion from these studies is that a combination of diverse develop
ment concerns, complexity and novelty in the development environment, and many rel
atively small-scale individual projects are working together to exacerbate the thin spread
of application domain knowledge (Curtis et aI., 1988). There are currently 139 separate
projects (59 of which are new development) in 12 different functional areas of the business,
ranging from order processing and revenue management to dispatch monitoring, resource
planning, and scheduling. In addition to intra-project communication needs, there is a
need for communication between these projects, as they share concerns of the application

60

www.manaraa.com

CASE IDOLS 245

domain (aspects of the railroad business) as well as common development platforms. Cur
rent organizational lines tend to create barriers for this kind of communication (Poltrock
and Grudin, 1994), creating a lack of consistency across products and duplication of
effort.

For example, in a design meeting we observed at UPRR, a team was building an appli
cation that moved a dataset from the mainframe to the more accessible medium of Lotus
Notes on PC workstations. The program was designed to be manually invoked from a
workstation. This aspect of the design caused a great deal of discussion about the merits of
automatically triggering the program from the workstation:

S 1: "So then, my question becomes: Are we not far enough in our infrastructure where we
can automatically trigger this job and move it over to Lotus Notes?"

Automatic job triggering is clearly an issue with broad applicability in UPRR's client
server architecture, for which no known solution exists, but similar issues have been ad
dressed:

S2: "Currently we have jobs that automatically run and populate ... be it a Oracle database
or whatever!"

S3: "On the server!"
S2: "Right, going through server. But I don't know about Lotus Notes, so I can't speak

of that! But I know there are things out there that could potentially do that. They
can do that through client-server 10-33 machines. So it should be able to do that in
Lotus Notes Database. I know there are other systems out there that are working to get
information directly from Oracle, which is only 10-33 machines, and again leading it
into Lotus Notes. So there is a potential option and that is to move it straight to Oracle
and then port it out of Oracle."

S3: "Yeah, I think, in fact, there are lot oftools available today and working to automatically
initiate jobs on the server. But this one is kind of unique in that it has to be initiated
from the workstation. But I don't know whether there are any to remotely initiate jobs
on the workstation."

Here we have a pattern, a recurring need for the organization that needs to be identified
and disseminated to projects potentially needing a solution. Its utility may seem obvious in
hindsight, but it is an emergent need to the people in this organization. As this project finds
a solution, it needs to be disseminated so projects with similar requirements can use, adopt,
and learn from the solution. Methods are needed that disseminate what is currently known
in a timely manner so the organization can build on successes, avoid duplicate efforts, and
avoid repeating mistakes.

The following sections present some examples of how CASE tools can support the domain
lifecycle. The maturity of these examples vary, reflecting our current state in this multi
year project. We are currently in the process of installing tools for the case-based repository
in a pilot project at UPRR. The purpose of presenting them in this paper is to demon
strate how the domain lifecycle can be supported, not to present final versions of CASE
tools.

61

www.manaraa.com

246 HENNINGER

3. Supporting the domain Iifecycle with organizational learning tools

An organizational learning approach to software development requires the development of
three interrelated techniques:

• case-based methods to collect and organize project experiences, tools, and development
infrastructure issues

• tools to support the identification of domains and synthesize knowledge in the form of
domain models, design guidelines, value-added reusable artifacts, and electronic hand
books

• development of domain-specific design environments to provide automation and intelli
gent support for well-established domains.

3. J. A case-based software development repository

An organizational learning approach to software development depends critically on iden
tifying commonly occurring patterns across a number of development efforts. Case-based
reasoning is an artificial intelligence method based on cognitive models postulating that
much of human problem solving involves applying past experiences to analogically re
lated situations. While early case-based systems attempted to provide artificially intelligent
problem solving by automatically adapting existing solutions to new situations, recent
systems have emphasized providing an external memory for users through an interactive
process of decision support (Kolodner, 1991). A case-based repository for decision sup
port helps users reason "from old cases or experiences in an effort to solve problems,
critique solutions, explain anomalous situations, or interpret situations". (Kolodner, 1991;
p.53).

Case-based decision aid technology is a perfect fit with an organizational memory ap
proach to software development because we are interested in situations in which no for
malized or algorithmic solutions are available, but problem solving examples exist. Users
begin the problem solving process by describing a problem to the case-based system. The
system retrieves cases with similar features. Using these cases as a basis for decision mak
ing, the user adapts case solutions to their problem solving context. The cases help the
user by showing suggestions for solutions, problems encountered in old cases, and results
of applying the case (Domeshek and Kolodner, 1992). Even when the context in question
is ra<;lically different than the available cases, the information can help designers focus on
issues that significantly impact the design process and artifact. Case-based methods can
also support the abstraction process that is so important to domain analysis (Prieto-Diaz
and Arango, 1991) through the detection of patterns, such as when several cases suggest
the same solution and/or are indexed with similar terms.

Using case-based methods for constructing a repository of software development knowl
edge involves three interrelated issues: (l) effective knowledge dissemination, (2) unobtru
sive knowledge collection, and (3) changes to the development process. In what follows,
these issues are examined through a second-generation prototype that we have developed
to communicate and explore our ideas with UPRR personnel.

62

www.manaraa.com

CASElDOLS 247

Open _ Rnourc:c a

H T.

Cevoalt

GOnGfllll Inlo

Figure 2. Viewing information on tools.

3.1.1. Knowledge dissemination. With over 90 different development tools in use at
UPRR, choosing an appropriate set of tools for a project is becoming a significant problem.
The sheer number is a formidable barrier, but the complexity and overlapping nature of
these tools, ranging from operating systems, databases, and languages to CASE tools, de
velopment methodologies and word processors creates an information overload situation.
Our approach to disseminating case-based knowledge has been to provide CASE tools to
support exploring the repository (Henninger et aI., 1995). Two methods are provided for
retrieving and browsing information in the repository. The first is to find a specific tool
and search its categories for needed information. The second is to search across all cases,
receiving matching cases the cross tool boundaries. The methods are described in the
following paragraphs.

Finding tool information. Figure 2 demonstrates how information about resources are
viewed. Resource windows are one-stop locations to get information on a specific CASE
\001 , development method, etc . The "View a Resource" window on the left-hand side of
figure 2 is used to choose a type of resource, which includes tools, development methods,
project issues, source code, and projects. Once the type is chosen the user can choose a
specific resource from the scrollable window. Recent feedback has indicated that, with
the number of available tools, another level of categorization may be necessary to make
the process of finding the tool easier. Double-clicking on the resource name displays the
window on the right-hand side of figure, in this case the PowerBuilder CASE tool.

The categories displayed in the resource interface (PowerBuilder in figure 2) is largely
dependent on the type of resource. The fields we have chosen for tools were derived from
a number of Lotus Notes databases used to exchange information about some of the tools
used at UPRR. The Description field gives a brief introductory message about the tool. The
How-To field contains tips and techniques that have been used to solve problems with the
tool. The entries in this and the rest of the fields point to cases in the repository that can be
displayed by clicking on the entry. Notice that the How-To entries contains organization
specific knowledge about how the tool is used in the development context at UPRR which
includes an eclectic mix of other off-the-shelf CASE tools, in-house systems, projects,

63

www.manaraa.com

248 HENNINGER

and other issues. For example, TCS' refers to the "Train Control System", a custom
built mainframe application used to collect large amounts of data about the railroad, while
'Watchdog' refers to a project in the organization.

The Caveats field is intended to collect information about idiosyncratic issues users may
need to be aware of when using the tool. For example, some UPRR projects have discovered
that PowerBuilder's control ofthe system can interfere with communications software. The
Projects field collects all the UPRR projects that have used this tool. Open Questions is
a forum for unresolved questions. Once an open question is answered, it should migrate
to the How-To, Caveats, or Known Bugs and Fixes fields. The Known Bugs and Fixes
field holds information about bugs with the tool or using the tool in certain environments.
Reusable Objects points to information about reusable objects associated with the tool
along with pointers to the source. Standards holds corporate standards for using the tool,
naming standards, etc. General Info. helps users find people with expertise about the tool. It
includes local experts ("TPM" refers to Technology Product Managers that are responsible
for helping developers use applications effectively). It also has contact information for the
CASE tool vendor.

Querying for similar problems. Developers may not always need information that is tied
to a specific tool. In these cases we have provided users with a search mechanism that finds
cases across different tools and projects. Figure 3 shows the query interface and the result
of a query about combo boxes for access to TCS (Train Control System) databases. The
matching cases shown in the window on the right-hand side of figure 3 display the titles of
cases and the description field of the selected case. Double-clicking on the title of selecting
and choosing "View Case" displays the case's window (a case window is shown in figure 5).
In this instance the user has chosen to search the entire repository of cases. By choosing
the "Restrict By" box, the user can restrict the search to a particular type of resource and
(optionally) a specific resource (such as PowerBuilder or IEF).

This query method is invaluable not only for answering specific queries, but for finding
out what kinds of problems a given tool can be used for. By querying the repository for a
given problem, cases are returned that match that kind of problem. By perusing what kinds
of tools have been used to solve this problem, one can begin to understand which tool should

Vi c..e

Ilri. tc.CUlletIt c. •• I

I SUII;h

I Re{\IIntoC4.lIlI I

00 ••

Figure 3. Searching for cases.

64

www.manaraa.com

CASE1DOLS

Terms Characteristics

Figure 4. Indexing architecture for the repository.

Experience
Cases

249

be used for a particular type of problem. For example, it could be found that IEF has been
used for a number of systems in which access to windows and buttons need to be secured for
certain users. Using this tool for a development project with similar requirements ensures
that some of the issues have already been documented, and increases the likelihood that
reusable objects exist.

Any case-based approach relies heavily on the case retrieval mechanism, often referred to
as the indexing problem (Kolodner, 1993), which is responsible for finding appropriate cases
for a given problem description. Indexing, the process of representing cases with key terms
and phrases (the "Characteristics" field in figure 5), is only half the problem. The other half
is the method of matching queries to case representations. Simple matching techniques
have been shown to inadequately support the process of satisfying an information need,
especially when the query is ill-defined (Belkin and Croft, 1992). Methods are needed that
can retrieve noisy and inexact patterns with a soft matching retrieval algorithm.

The indexing architecture we have adopted consists of three types of objects; terms,
characteristics, and experience cases (see figure 4). People searching for experience cases
specify a query with characteristics. Characteristics are structured objects with a descrip
tion, a list of cases that use the characteristic, and a list of terms that index the characteristic.
They define a standardized controlled vocabulary to index cases. People indexing cases are
encouraged to reuse existing characteristics when they apply, although new characteristics
can easily be defined. A controlled vocabulary approach was adopted for three reasons.
First, for describing objects, such as source code, that do not follow the linguistic regulari
ties of text documents, controlled vocabulary approaches may be superior to other indexing
methods (Prieto-Diaz, 1991). Secondly, this approach fits many organizations where stan
dard terminology and acronyms are used to communicate common issues. We often heard
statements like "That's a track capacity issue" at UPRR. Key phrases such as "track capac
ity" can be used as characteristics to help establish a carefully designed vocabulary that best
describes domains within the organization. Third, defining a standard set of terminology is
a first step toward formalizing domain knowledge (Prieto-Diaz, 1991).

65

www.manaraa.com

250 HENNINGER

The problem with a standard or controlled vocabulary is that it must be learned. This is
a barrier not only to novices, but experienced people that are exposed to new projects with
their own set of terminology. We therefore allow an uncontrolled vocabulary of terms to
help find characteristics, as shown in figure 4. People need to use characteristics to look for
cases, but if they are unsure of which characteristics to use, or want to find an exhaustive
list of characteristics for a given issue, they can construct a query of terms to find charac
teristics. We do not allow terms to retrieve cases as this would reduce the benefits of using
a controlled vocabulary.

We have chosen a spreading activation retrieval method that uses a connectionist relax
ation algorithm to support finding partially matching patterns. The algorithm is explained
formally elsewhere (Henninger, 1995), but the basic process is as follows. Let's say a user
specifies term A in a query (see figure 4). The A node is given an activation value of 1.0 that
is passed to all characteristics it indexes, wand x in this case. The activation value passed to
the characteristic nodes will be reduced by the strength of the link weight (which measures
the degree of association between a term and characteristic), and is adjusted by other factors
such as fan-in and decay (Henninger, 1995). On the next cycle, wand x will have a non-zero
activation value that will be passed to all term nodes they are connected to. This process
repeats until activation values stabilize or a user defined number of cycles is reached. The
same process is used to find experiences cases with characteristics defining the query.

The strength of this method is that it is able to find partial patterns in the repository.
For example, when x passes its activation value to C and D on the second cycle, these
two nodes work together to reinforce x's activation value and activate z. Further cycles
reinforce x and z because of the feedback loop between these nodes and C and D. In the
end, x and z will have similar activation values. The structure of the repository detects that
characteristics x and z are similar because they have similar representations. The spreading
activation process has detected the pattern through a partial match. Notice also that z would
not have been retrieved if we were using a straightforward matching algorithm. Spreading
activation found z because it is similar to x, which directly matched the query of A. While
other partial match paradigms, such as Latent Semantic Indexing (Deerwester et ai., 1990)
and Lexical Affinity (Maarek et ai., 1991), can also find partial matches, the spreading
activation method was chosen because it is particularly suited to retrieving non-text objects
such as source code (Henninger, 1994).

3.1.2. Knowledge collection. Developing a large-scale, real-world, knowledge base to
support the development process is not a simple matter of engaging in an up-front knowledge
acquisition effort. A process of continuous incremental refinement (Terveen et ai., 1993)
much be in place so the repository can evolve as new problems and solutions are discovered
(Gaines, 1989). Generally there are two approaches to knowledge acquisition in software
design environments. The first is to take the naive position that designers will readily
perceive the future benefits of engaging in the often difficult, and always extra, task of
putting knowledge into the system. A second approach is to appoint a "knowledge librarian"
to maintain a knowledge base. While this shifts the workload away from developers and
ensures that the knowledge base is continually updated, it does not ensure that relevant and
accurate information is acquired.

66

www.manaraa.com

CASE IDOLS 251

This brings us to a third approach that provides knowledge acquisition tools so developers
can encode knowledge as part of their actual development work. This leads to contextualized
knowledge acquisition where knowledge is encoded into the system when it is created.
Based on the premise that you won't know what is really needed until you 're in the design
process, contextualizing the knowledge acquisition process helps ensure that relevant knowl
edge is put in the knowledge base. This approach hasn't been explored much, but the under
lying framework is already in place with domain analysis and design rationale techniques.

Our studies revealed that there are currently many information collection activities in
development practices, with developers and managers at UPRR devoting an about of 30-
40% of their time to knowledge collection activities such as entering tips and techniques into
Lotus Notes databases, writing up meeting notes, and coordinating development activities.
Scribes are often appointed at meetings to take notes and keep track of action items. We
are currently in the process of putting some of these knowledge collection sources together
and designing project management tools that capture design rationale throughout the design
process for storage as cases in the repository.

One of the primary knowledge collection tools in the case window (see figure 5). This
window contains all of the relevant information about a case, including a description of the
problem, the solution, a set of characteristics (index terms), the resources associated with
this case, resource categories, a set of related cases, and some status information on the
case. All of these fields are optional and can be filled in either by creating a new case or
modifying an existing case and saving it with a new name.

The case shown in figure 5 directs users toward some reusable source code that has been
developed for the PowerBuilder platform. The case should therefore be associated with the

,<"; .. -.. , .;:~, -~~v':"::';~::" " Data Window Retrievals Functions Available a
Oe.e.ipllon . if", sefVer 41 iI G IALlJF'O'IrIERBUDIUPT IPSUPTFN POL. I have eroded 3 hn:6ons that 1!l

IaIow an oppicaIoon to RETRIEVE ~~ dol--.low t!l
Solution ' I have ~ h.ncbon set up I", '.'0 argument •. 2 wong Olgument. ",4 ,tmg OlgIAnO • It would be •

tfy trrlPIe to copy Ihe>e and me'e MW one. I", addIJonoi nurrber. and types 01 Olgumenl'
The,. Ol. ncxelUIn codes onvolved becau1e ... • "Ot hardrog &rid lel",n eodM Ol. handed wthn
!hehn:6ons

Characteristic, :

ReJou,ce~ Fo, This Ca ••

Type ISou,ce Code

. P Bu r.

Aesou(ce : C dw_,etrteve_O_arga:
Cdw_,et.ievo_2_8rg.
f dw ret,ieve 4 a, •

Re.ou,ce Catego,iea: I Tool. : Po .. e,Builder : Reu.able Obi_ I [!] I link R •• ou,co Category I
Related Cases - Commonly Used Data Window Update And Retrieval FeatUle.

Owne, : Jim Plough Stato,., I Resolved

Figure 5. The case window.

67

www.manaraa.com

252 HENNINGER

!II , ... ; :;':;. :·:.~,~ Li.nk: Ca~.e .~o . Resource Cat.egory '~:<:~f:G%:\{,~~alll

[case Name I
Asynchronous PlOcening with Composer By IEF for CIS Applications

Type: Resource:

IToolS 1m l iEF I[!]
Resource Category:

L~ If!l L Done I , ,
Caveats
Projects
Open Questions
Known Bugs &: Filles
Reusable Objects
Standards
General lnlo.

Figure 6. Linking cases 10 a resource calegory.

"Reusable Objects" category of the PowerBuilder tool. This association is created by linking
the case to the appropriate resource. Cases can be associated to any number of categories.
Clicking on the "Link Resource Category" button brings up the window shown in figure 6.
We used a different case for this image that has to do with asynchronous processing with
the IEF tool. After clicking on the "Done" field, the case will be come associated with the
"How-To" category of the IEF tool. The case will appear on the "Resource Categories"
combo box in the case's window and can be chosen from the "How-To" field in the IEF
resource descriptor window (similar to the window shown in figure 2).

3.1.3. Changes to development practice. By enforcing the use of standard development
methodologies and processes, most CASE tools mandate changes in the manner in which
software is developed. But organizations are generally slow to change, causing a signif
icant barrier to CASE tool adoption. The organizational learning approach to software
development faces similar problems. In the very least, development becomes a process of
basing decisions on previous experiences, thus advocating reuse throughout the develop
ment process. Institutionalizing reusability procedures in organizations is currently a hot
topic, and few instances of true organizational change have been reported (Griss, 1993).
The domain Iifecycle itself advocates viewing software development as producing product
lines (Gomaa and Kerschberg, 1995) with implications across the organization. This is a
sizable departure from the current software development culture, which focuses exclusively
on development projects.

The strength of the domain lifecycle is that proper levels of formalization can be applied as
a domain matures. When the domain is new or the issues will not necessarily recur, keeping
a semi-formal case-based repository will suffice. This kind of process is in alignment with
many development organizations that are using informal e-mail and discussion software.

68

www.manaraa.com

CASE100LS 253

such as Lotus Notes, to disseminate and archive information. It is, in many ways, an
extension of the traditional office memorandum and filing cabinet method. It is not until
a domain has recurring problems or is part of the development network that more formal
methods need to be applied. This allows a level of discrimination in terms of what kind of
documentation and rigor is needed for a given problem. As opposed to applying rigorous
methods universally, developers can place their time and effort where it is needed the
most.

The other strength of the organizational learning approach is that it embraces diversity.
Instead of trying to fit CASE tools into problems or domains they are not well-designed for,
this approach seeks to learn which tools are best for given types of problems. This flexibility
allows people to work with familiar tools and process models, but comes with the potential
expense of having to train developers in a wide range of CASE tools. Our observations at
UPRR indicate this happens anyway, but we are investigating ways in which the expertise
of project members can provide an input to the process of choosing and using CASE
tools.

3.2. From cases to domain knowledge

One problem with a case-based approach to software development is that cases tend to
represent isolated problems that need to be adopted from one set of specifics to another.
Domain analysis methods are needed that synthesize similar cases into knowledge that is
applicable to a class of problems. This is precisely where organizational learning comes in.
Most methods advocate creating a formal model of the domain (Prieto-Diaz, 1991), making
domain analysis and software reuse most useful for established domains with well-known
parameters (Biggerstaff, 1992). But in the fast-paced world of technological advances
that characterizes the computer industry, well-established domains are an increasingly rare
commodity. Domain analysis methods need to be able to accommodate the intrinsic forces
of change stemming from the difficulty of creating well-designed systems to begin with,
as well as meeting the needs of a dynamic marketplace that reflect changing and evolving
user needs (Computer Science and Technology Board, 1990).

The real issue of domain analysis is to find commonalties among systems to facilitate
reusing software and other design artifacts. From this perspective, domain analysis is
a process of identifying commonly occurring patterns across a number of development
efforts. The "domain" does not necessarily need to be a family of applications or a formal
model, but a set of problems within applications with recurring activities and/or work
products. As patterns emerge, top-down domain analysis methods can be used to formalize
the patterns, facilitating domain evolution from the identification of isolated patterns to
formally defined domain knowledge. Identifying established patterns of effort reduces the
risk of costly domain analysis efforts by ensuring that the cost of analysis can be amortized
over many uses.

We have been investigating techniques that help domain analysts detect recurring patterns
with the case-based repository (Henninger et aI., 1995). Spreading activation (Henninger,
1994) and analogy-based matching (Maiden and Sutcliffe, 1992) an be used to identify cases
with potentially similar characteristics. For example, suppose an organization has a number

69

www.manaraa.com

254 HENNINGER

of projects that have begun to struggle with issues of backup and recovery in a client-server
architecture. The analyst begins by querying the system with terms such as "backup" and
"recovery", finding characteristics such as ''Automatic backup", "File backup", Disaster
recovery", "Backup scheduling", "Update frequency" and others. The analyst consults
the repository to understand some of the different ways backup and recovery have been
addressed. From these, the analyst begins to construct facets (Prieto-Diaz, 1991) to help
understand the domain, such as:

• mode: automatic or manual
• data type: database, files
• architecture: mainframe, server, workstation
• scheduling: volume size, loading

From here the analyst can begin to organize the software artifacts that have accumu
lated about backup and recovery issues. The repository provides a comprehensive and
convenient mechanism for performing the analysis. It is precisely this kind to support
for domain analysis that is necessary to provide "the reference assistance other types of
engineers have benefited from for decades" (Computer Science and Technology Board,
1990)

3.3. Domain-specific design environments

Domain-specific design environments (Fischer and Lemke, 1988) integrate a domain
oriented framework with reusable components that can be selected and configured to au
tomatically construct systems though the direct manipulation of visual icons representing
code components. Systems are composed in a work area that is monitored by "critics"
(Fischer et aI., 1991a) that display artifact-centered, domain-specific, intelligent support
when sub-optimal design decisions are detected (Fischer et aI., 1992). These systems
can provide a very high-level of specific support because they concentrate effort on good
solutions within a domain, instead of addressing universal solutions. Fischer and his
colleagues have also defined an incremental process of knowledge acquisition (Fischer
et aI., 1994). But this approach assumes that the domain knowledge is a known entity,
ignoring important issues of identifying domains as they emerge in organizations and
providing support when formal representations of design artifacts are not immediately
available.

A key issue in the domain lifecycle is identifying the domains so that increasingly formal
representations can be developed. For example, taking the domain analysis presented in
the previous section, a design environment tool builder could begin the process of creating
an environment for automatically creating a backup and recovery solution. Users would
describe their application needs and choose elements of the facets identified in the domain
analysis. The system would then critique the selections, guiding the developer toward
quality solutions based on the accumulated domain experience of people in the organization.
While the cost of creating of these kinds of domain-specific design environments may be
relatively high, we are guaranteed that the environment will see use as its creation was based
on an analysis of recurring problems in the organization.

70

www.manaraa.com

CASE100LS 255

4. Related work

In many respects the approach outlined here follows the domain analysis prescription to
identify reusable information in the problem domain, capture relevant information, and
evolve the information to meet current needs (Arango, 1989). Domain analysis techniques
have been designed to systematically identify objects and relationships of a class of systems
(Neighbors, 1984). But it would not be too unfair to characterize most domain analysis ap
proaches as a form of top-down analysis that is difficult to apply unless the domain is
well-understood to begin with (Arango, 1989; Biggerstaff, 1992). Our approach augments
these efforts in two ways: (1) The entire domain lifecycle is supported, from its inception by
trail-blazing projects to encoding domain abstractions in a design environment, not just the
intermediate step of formalizing an already well-known domain. (2) The process of domain
understanding is supported with tools that help identify recurring patterns of activities in
an organization's software development efforts that can be flagged as candidates for formal
domain analysis efforts.

The software factory approach (Caldiera and Basili, 1991) is similar to our domain
lifecycle in that it separates developers into roles of application developers and reusable
component developers. The STARS framework shares the concerns with developing and
maintaining domain-specific assets for the continual improvement of reuse-oriented activi
ties (STARS, 1992). The experience factory (Caldiera and Basili, 1991) is similar in spirit
to our case-based repository of project experiences. Technology books formalize knowl
edge about algorithms for classes of problems (Arango et at., 1993). Case-based reasoning
techniques have been employed to adapt and compose reusable components (Fouque and
Matwin, 1993). While these methods largely focus on the component and algorithm levels,
we take a broader view to include any significant development issue. For example, one
project at UPRR performed a study of screen ergonomics. While the project was eventu
ally canceled, the screen ergonomics report is highly regarded and has been used by other
projects. Our objective is to provide a formalized process by which such artifacts can be
identified and disseminated for widespread use.

Design rationale tries to capture the rationale behind the designs of systems (Lee, 1993).
Tools like gIBIS (Conklin and Yakemovic, 1991), PHI (Fischer et aI., 1991 b), Sibyl (Lee,
1990), Remap (Ramesh and Dahr, 1994) and QOC (Maclean et aI., 1991) use various
representations to allow design alternatives to be collected and explored through browsing
and retrieval methods. These methods advocate a process of deliberation in which design
decisions are reached by consulting the design issues and alternatives stored in a repository.
Our perspective is slightly different in that we are interested in capturing what occurred as
a result of the decision, and how future efforts of a similar nature can be improved, not just
capturing the rationale of why a system was designed a certain way.

Our approach is most closely related to some approaches to constructing organizational
memory systems (Walsh and Ungson, 1991). While the organizational learning approach
outline in this paper emphasizes the process of learning from and improving on previous
efforts, organizational memory efforts focus on the first step in our domain lifecycle, col
lecting and disseminating design information. Teamlnfo focused primarily on identifying
categories of querying and browsing behavior for an organizational memory of loosely

71

www.manaraa.com

256 HENNINGER

organized e-mail messages (Berlin et aI., 1993). Answer Garden was built to turn knowl
edge into an organizational asset in a network of multiple-choice questions and answers
(Ackerman and Malone, 1990). Their bottom-up process evolves the repository in response
to user questions, and would be most useful for collecting experiences about development
tools. Our framework goes further to formalize the process of analyzing domains and
turning the individual cases into assets that can streamline the development process.

The Designer Assistant project at AT&T is similar in scope and philosophy to our ap
proach (Terveen et aI., 1995). They are not only interested in building support tools, but
also designing how the tool should be used. Their Designer Assistant system was integrated
with existing practices by fitting its use into the development process. This strategy not only
ensured that Designer Assistant is used, but also that it is modified as part of the development
process, allowing it to evolve with changing organization needs. The primary difference is
the Designer Assistant only deals with the organizational memory aspects, leaving no sup
port for domain analysis or the construction of domain-oriented design environments. Also,
the Designer Assistant's repository is structured as an advice-giving system, while we have
chosen to use case-based reasoning techniques that allow more open-ended queries that are
needed for certain kinds of problem solving, and that have been requested in feedback from
Designer Assistant users (Terveen et aI., 1993).

5. Conclusions and future work

The technical innovations of the CASE field can reach their potential onl y through a shift that
incorporates the broader organizational and methodological issues of software development.
An approach in which experiences from previous and ongoing projects and brought to bear
on the issues faced by development and maintenance projects is needed. We must begin
to develop techniques to support the domain lifecycle (Simos, 1988), in which software
development projects are seen as members of a product line or product family defined by an
application domain. Routine development becomes routine, drawing on reusable designs,
design processes, and other artifacts, leaving adequate resources to concentrate on the novel
aspects of software system.

We support the domain lifecycle through CASE tools that define a progression from indi
vidual project experiences (cases) to domain-oriented design environments that formalize
development knowledge and artifacts. Appropriate levels of formality is supported as an
organization learns about the domains their software is built around. The development
of novel activities is supported through project experiences accessed through case-based
repository technology. As activities are repeated, case-based technology is employed to
identify recurring development issues and support the process of generalizing from indi
vidual cases to domain-specific abstractions such as design guidelines, domain models and
other formal structures. As knowledge of the domain accumulates, knowledge-based de
sign environments can be created that automate design and provide intelligent support for
design activities.

This approach is based on empirical observations of-a large software development orga
nization. We are currently in the process of integrating these tools into the organization,
paying careful attention to existing development practices while creating the necessary

72

www.manaraa.com

CASE100LS 257

infrastructure to take full advantage of the improvements offered by the domain lifecycle.
We are in the process of empirically validating the domain lifecycle by working closely
with an ongoing development project at UPRR. We have identified a domain that the project
is working on that will have impact on other projects in the organizations. We are currently
analyzing this domain by collecting cases from this and other projects working in this do
main. The cases are being used to systematically analyze the domain and provide domain
abstractions that can guide projects developing within this domain. We will also construct
a design environment in the near future that will generate code on PC client platform used
by the organization.

A key question that exists for our work as well as work in the areas of domain analysis,
design rationale, and organizational memory, is how the process of generating and using
repositories of design information can be embedded in the everyday practice of software de
velopment so that the repository evolves with the ever-changing goals and accomplishments
of the organization (Terveen et aI., 1995). Our approach advocates using the repository to
both track project progress and as an information resource to support design and decision
making. Much more work is needed to accomplish this goal. We are approaching this
problem in a user-centered, participatory design, process in which we work with users
(developers at UPRR) and deploy prototypes to collect feedback and refine our model to
fit the organization's needs. Successful deployment of this system will not only help the
software development process at UPRR, but will provide a crucial first step toward better
understanding the software development process and how it can be improved.

Acknowledgments

I gratefully acknowledge the efforts of Lynden Tennison and Jim Montequin at Union Pacific
Railroad. I am also indebted to a number of graduate students that have helped, including
Kurt Baumgarten, Charles Daniel, Kyle Haynes, Kris Lappala, and Chris Neblett. This
research was funded by the National Science Foundation (CCR-9502461), Union Pacific
Railroad, and the Applied Information Management Institute in Omaha.

References

Ackerman, M.S. and Malone, T.W. 1990. Answer garden: A tool for growing organizational memory. In Proceed·
ings of the Conference on Office Information Systems, pp. 31-39.

Arango, G. 1989. Domain analysis: From art form to engineering discipline. In Proceedings Fifth International
Workshop on Software Specification and Design, Pittsburgh, PA, pp. 152-159.

Arango, G., Schoen, E., and Pettengill, R. 1993. A process for consolidating and reusing design knowledge. 15th
International Conference on Software Engineering (ICSE'93), Baltimore, MD, pp. 231-242.

Belkin, N.J. and Croft, W.B. 1992. Information filtering and information retrieval: Two sides of the same coin?
Communications of the ACM, 35(12):29-38.

Berlin, L.M., Jeffries, R., O'day, Y.L., Paepcke, A., and Wharton, C. 1993. Where did you put it? Issues in the
design and use of a group memory. In Proc. InterCHl'93, Amsterdam, pp. 23-30.

Biggerstaff. T.J. 1992. An assessment and analysis of software reuse. Advances in Computers, 34:1-57.
Boehm, B.W. 1988. A spiral model of software development and enhancement. Computer, 21(5):61-72.
Caldiera, G. and Basili, Y.R. 1991. Identifying and qualifying reusable software components. Computer, 24(2):61-

70.

73

www.manaraa.com

258 HENNINGER

Card, D.N., McGarry, F.E., and Page, G. T. 1987. Evaluating software engineering technologies. IEEE Transactions
on Software Engineering, 17(7):845-851.

Church, T. and Matthews, P. 1995. An evaluation of object-oriented CASE tools: The newbridge experience. IEEE
Seventh International Workshop on Computer-Aided Software Engineering-CASE'95, pp. 4-9.

Computer Science and Technology Board. 1990. Scaling up: A research agenda for software engineering. Com
munications of the ACM, 33(3):281-293.

Conklin, E.J. and Yakemovic, K. 1991. A process-oriented approach to design rationale. Human-Computer Inter
action, 6(3-4):357-391.

Curtis, B., Krasner, H., and Iscoe, N. 1988. A field study of the software design process for large systems,
Communications of the ACM, 31(11):1268-1287.

Deerwester, S., Dumais, S.T., Furnas, G.w., Landauer, T.K., and Harshman, R. 1990. Indexing by latent semantic
analysis. Journal of the American Society for Information Science, 41(6):391-407.

Domeshek, E.A. and Kolodner, J.L. 1992. A case-based design aid for architecture. Artijiciallntelligence in
Design'92, pp. 497-516.

Fischer, G. and Lemke, A.C. 1988. Construction kits and design environments: Steps toward human problem
domain communication. Human-Computer Interaction, 3(3): 179-222.

Fischer, G., Lemke, A.C., Mastaglio, T., and Morch, A.I. 1991a. Critics: An emerging approach to know1edge
based human computer interaction. International Journal of Man-Machine Studies, 35(5):695-721.

Fischer, G., Lemke, A.C., McCall, R., and Morch, A. 1991b. Making argumentation serve design. Human
Computer Interaction, 6(3-4):393-419.

Fischer, G., Girgensohn, A., Nakakoji, K., and Redmiles, D. 1992. Supporting software designers with integrated,
domain-oriented design environments. IEEE Transactions on Software Engineering, Special Issue on Knowledge
Representation and Reasoning in Software Engineering, 18(6):511-522.

Fischer, G., McCall, R., Ostwald, 1., Reeves, B., and Shipman, F. 1994. Seeding evolutionary growth and reseeding:
Supporting the incremental development of design environments. In Proc. of the Conference on Computer
Human Interaction (CHI'94), Boston, MA, pp. 292-298.

Fouque, G. and Matwin, S. 1993. A case-based approach to software reuse. Journal of Intelligent Information
Systems, 1:165-197.

Gaines, B. 1989. Social and cognitive processes in knowledge acquisition. Knowledge Acquisition, 1(1):38-58.
Gomaa, H. and Kerschberg, L. 1995. Domain modeling for software reuse and evolution. IEEE Seventh Interna

tional Workshop on Computer-Aided Software Engineering-CASE'95, pp. 162-171.
Granger, M. and Pick, R. 1991. Computer-aided software engineering impact on the software development process:

An experiment. In Proc. 24th Annual International Conference on System Sciences, Hawaii, pp. 28-35.
Griss, M.L. 1993. Software reuse: From library to factory. IBM Systems Journal, 32(4):548-565.
Henninger, S. 1994. Using iterative refinement to find reusable software. IEEE Software, 11(5).
Henninger, S. 1995. Information access tools for software reuse. Journal of Systems and Software, 30(3):231-

247.
Henninger, S. and Lappala, K. 1994. Finding the Right for the Job, UNL-CSE-94-002, University of Nebraska

Lincoln, Department of Computer Science and Engineering, Lincoln, NE.
Henninger, S., Lappala, K., and Raghavendran, A. 1995. An organizational learning approach to domain analysis.

Seventeenth International Conference on Software Engineering, Seattle, WA, pp. 95-104.
Holtzblatt, K. and Jones, S. 1993. Contextual inquiry: A participatory technique for system design. Participatory

Design: Principles and Practice, A. Namioka and D. Schuler (Eds.), Erlbaum, Hillsdale, NJ.
Huff, C.C. 1992. Elements of a realistic CASE tool adoption budget. Communications of the ACM, 35(4):

45-54.
Humphrey, W.S. 1989. Managing the Software Process. Reading, MA: Addison Wesley.
Kemerer, C.F. 1992. How the learning curve affects CASE tool adoption. IEEE Software, 9(3):23-28.
Kolodner, J.L. 1991. Improving human decision making through case-based decision aiding. AI Magazine, 12(I):

52-68.
Kolodner, J.L. 1993. Case-Based Reasoning. San Mateo, CA: Morgan-Kaufman.
Lee, 1. 1990. SIBYL: A tool for managing group design rationale. In Proceedings of the Conference on Computer

Supported Cooperative Work (CSCW'90), Los Angeles, CA, pp. 79-92.
Lee, 1. 1993. Design rationale capture and use. Al Magazine, 14(2):24-26.

74

www.manaraa.com

CASE100LS 259

Maarek, YS., Berry, D.M., and Kaiser, G.E. 1991. An information retrieval approach for automatically constructing

software libraries. IEEE Transactions on Software Engineering, 17(8):800-813.
Maclean, A., Bellotti, Y, Young, R., and Moran, T. 1991. Questions, options, and criteria: Elements of design

space analysis. Human-Computer Interaction, 6(3-4):201-251.

Maiden, N.A. and Sutcliffe, A.G. 1992. Exploiting reusable specifications through analogy. Communications of

the ACM, 35(4):55-64.
Neighbors, J. 1984. The Draco approach to constructing software from reusable components. IEEE Transactions

on Software Engineering, 10:564-573.
Nonnan, R. and Nunamaker, J. 1989. CASE Productivity perceptions of software engineering professionals.

Communications of the ACM, 32(9): 1102-1108.
Poltrock, S.E. and Grudin, J. 1994. Organizational obstacles to interface design and development: Two participant

observer studies. ACM Transactions on Computer-Human Interaction, 1(1):52-80.
Potts, C. 1993. Software-engineering research revisited. IEEE Software, 10(5): 19-28.
Prieto-Diaz, R. 1991. Implementing faceted classification for software reuse. Communications of the ACM, 35(5).
Prieto-Diaz, R. and Arango, G. 1991. Domain Analysis and Software Systems Modeling, IEEE Computer Society

Press, Los Alamos, CA.
Ramanathan, J. and Sarkar, S. 1988. Providing customized assistance for software lifecycle approaches. IEEE

Transactions on Software Engineering, 14(6):749-757.
Ramesh, B. and Dahr, Y 1994. Representing and maintaining process knowledge for large-scale systems devel

opment.IEEE Expert, 9(2):54-59.
Rich, C.H. and Waters, R.C. 1988. Automatic programming: Myths and prospects. Computer, 21(8):40-51.
Rieman, J. 1993. The diary study: A workplace-oriented research tool to guide laboratory efforts. INTERCHJ'93

Conference Proceedings, Amsterdam, pp. 321-326.
Simos, M.A. 1988. The domain-oriented software life cycle: Towards an extended process model for reusabil

ity. In Software Reuse: Emerging Technology, W. Tracz (Ed.), IEEE Computer Society, Los Alamos, CA,
pp. 354-363.

STARS, 1992. Informal Technical Report for Software Technology for Adaptable, Reliable Systems (STARS).
Electronic Systems Division, Report #STARS-UC-05159/00l/00, USAF.

Terveen, L.G., Selfridge, P.G., and Long, M.D. 1993. From 'Folklore' to living design memory. In Proceedings
InterCHJ'93. Amsterdam, pp. 15-22.

Terveen, L.G., Selfridge, P.G., and Long, M.D. 1995. Living design memory-Framework, implementation,
lessons learned. Human-Computer Interaction, 10(1):1-37.

Urban, J.E. and Bobbie, P.O. 1994. Software productivity: Through undergraduate software engineering and
CASE tools. In The Impact of CASE Technology on Software Processes, D.E. Cooke (Ed.), World Scientific
Publishing, Singapore.

Vesssy, I., Jarvenpaa, S.L., and Tractinsky, N. 1992. Evaluation of vendor products: CASE tools as methodology
companies. Communications of the ACM, 35(4):90-105.

Walsh, J.P. and Ungson, G.R. 1991. Organizational memory. Academy of Management Review, 16(1):57-91.
Yourdon, E. 1992. Decline & Fall of the American Programmer. Englewood Cliffs, NJ: Yourdon PresslPrentice

Hall.

75

www.manaraa.com

Automated Software Engineering 3, 261-284 (1996)
© 1996 Kluwer Academic Publishers. Manufactured in The Netherlands.

A CASE Tool for Software Architecture Design

KENGNG
JEFF KRAMER
JEFF MAGEE
Department of Computing, Imperial College, 180 Queen's Gate, London SW7 28Z, UK

kn@doc.ic.ac.uk
jk@doc.ic.ac.uk

jnm@doc.ic.ac.uk

Abstract. This paper describes the Software Architect's Assistant, an automated visual tool for the design and
construction of Regis distributed programs. Unlike conventional CASE tools and their supported methodologies,
the Architect's Assistant supports a compositional approach to program development in which the software
architecture plays a central role throughout the software Iife-cycle-from the early design stage through to system
management and evolution.

In its implementation, we have addressed some of the limitations of existing CASE tools, particularly in the
degree of automated support offered to the human developer. Conscious effort has been made to maximise usability
and efficiency, primarily by enhancing the level of automation and flexibility together with careful design of the
user interface. Our objective is to provide a tool which automates all mundane clerical tasks, enforces program
correctness and consistency and, at the same time, accommodates the individual working styles of its users.

Although currently specific to the development of Regis programs, the Architect's Assistant embodies concepts
and ideas which are applicable to CASE tools in general.

1. Introduction

Configuration programming (Kramer and Magee, 1985) is a style of program development
which emphasises the architectural view of a system. The premise of this approach is
that a separate, explicit structural (configuration) description is essential for all phases in
the software development process for distributed systems, from system specification as a
configuration of component specifications to evolution as changes to a system configuration.
Descriptions of the constituent software components and their interconnection patterns
provide a clear and concise level at which to specify and design systems, and can be used
directly by construction tools to generate the system itself. In many cases-particularly
embedded applications-it is the structure of the application itself which is used to dictate
the structure of the resultant system.

Regis (Magee et aI., 1994) and its predecessors Conic (Magee et aI., 1989) and REX
(Kramer et aI., 1992) are examples of systems which support this style of component-based
program construction.

The prominence of the software architecture in this paradigm also makes it particularly
well-suited for representation in a graphical form. Indeed, users of Regis programs usually
design their programs graphically using pencil and paper before translating the hand-drawn
diagrams into program text. Although useful, these paper diagrams do not offer the possi
bility of automation. Clearly, what is required here is a graphical front-end to the current

www.manaraa.com

262 NG, KRAMER AND MAGEE

Regis environment that can provide life-cycle support for software development, from ini
tial program design to the visualisation and evolution of the running program. The basic
architecture of a Regis program, which is maintained throughout this life-cycle, would be
a natural candidate as the unifying theme of such an environment. This then is the basic
motivation for our work on the Software Architect's Assistant.

Our survey of existing CASE tools has failed to find any that is suited to our needs.
Generic tools such as the Designer's Notepad (Haddley and Sommerville, 1990) shares
many of our concerns on design capture and expression, and provides flexible means for
note-taking, documentation and design exploration. However being a method-free tool, it
is weak in method-specific automated support. Similarly, MacCadd (Logic a, 1989) offers
a configurable graphical editor with a pre-defined set of symbols (e.g., rectangles, circles)
and connector types (dotted line, bold lines, arrows) but due to its generality, can offer
only limited consistency checks. Similar limitations exists in other generic CASE tools
such as Software Through Pictures (Wasserman and Pircher, 1987). Environments such as
STATEMATE (Hare I et aI., 1988) recognise the power of the structural view for system
specification and modelling, but tend to be weak in their support for component-based
distributed system construction. STILE (STructured Interconnection Language and Envi
ronment) (Stovsky and Weide, 1987) advocates and provides good support for graphical
component-based design and construction, but does not provide particular support for dis
tribution. Graphical tools for parallel programming such as HeNCE (Beguelin et aI., 1994)
for PVM (Sunderam, 1990) and CODE 2.0 (Newton and Browne, 1992) share our belief
in the benefits of structural visualisation, but adopts the dataflow model of computation
and operate at a lower level of granularity (i.e., at the subroutine instead of component
level). Similarly, Schooner (Homer and Schlichting, 1994) makes use of the AVS visuali
sation system (AVS, 1992) for configuring scientific applications made up of independently
developed components. ObjecTime (1993) is targeted at distributed real-time systems
and embodies many of the same concepts as DarwinlRegis, including the separation of
system structure from its behaviour. As in Darwin, the system architecture is specified
in terms of hierarchically-structured components which communicate through message
ports. The dynamics of a system is modelled using a variation of Hare!'s StateCharts
(Harel, 1987).

A common limitation we found in existing CASE tools is their failure to exploit the full
potential of automation (Martin, 1988). We feel that the main goal of software tools should
be to relieve the human developer of mundane, tedious bookkeeping tasks which are better
performed by the computer than by a human. This will allow the designer to concentrate on
the task at hand-the creative aspects of program development-instead of getting weighed
down by routine clerical details. Unless tools are able to offer significant added value in
terms of productivity and reduced costs, the provision of an electronic version of what was
done with paper and pencil may be outweighed by the overhead of the learning curve.

The need for incorporating domain knowledge into development tools have long been
recognised (Barstow, 1984; Rich and Waters, 1988) but this has only been partially realised
in the tools we see today, mainly in the form of syntax-sensitive electronic sketchpads.
For graphical CASE tools, we should embed not only knowledge of the methodology and
notations, but also bookkeeping knowledge such as consistency rules and diagram layout

78

www.manaraa.com

A CASE mOL FOR SOFTWARE ARCHITECTURE DESIGN 263

preferences so that the tools can play the role of intelligent assistants to the human developer.
We see this as a major challenge in our provision of visual tool support for Regis.

This paper outlines current research on an architectural framework for the engineering of
parallel and distributed systems, and its associated support tool. In the following sections,
we present a brief introduction to the Regis environment for component-based distributed
programming, followed by a detailed description of the Software Architect's Assistant, an
interactive graphical environment for the design and development of Regis programs. A
simple case study-an active badge system (Harter and Hopper, 1994)-is used to illustrate
the use of the tool, together with a discussion of some of its more novel ideas and features
from a tool implementation viewpoint.

2. An overview of Regis

A Regis program consists of a set of loosely coupled, context-independent software com
ponents which communicate to achieve an overall goal. Hierarchical composition and de
composition is supported to enable complex components to be constructed out of simpler
sub-components. In addition, these components may reside on the same machine or be
distributed across a network of workstations.

2. J. Composite vs. primitive components

There are two kinds of components in Regis: primitive and composite. Primitive compo
nents are the basic computational components at the bottom of the program hierarchy, and
are implemented in the C++ object-oriented programming language. A composite compo
nent, on the other hand, is constructed out of primitive components and other composite
components. The structuring tool for the description of its structure is provided by the
declarative configuration language Darwin. In other words, Darwin defines a composite
component in terms of its internal components and the bindings between those components.
An example of the graphical representation of a composite component and its corresponding
Darwin code can be found in figure 10.

2.2. Component interface

The interface of a Regis component is described in terms of the services it provides to
other components and those it requires of other components. These communication objects
provide the means with which components interact with one another. For instance, the sen
somet component in figure 10 communicates with its environment via the communication
objects sensout and sensin. In the graphical notation used, services provided are drawn as
filled circles whereas those required are drawn as white circles.

Interactions between components are represented by bindings which connect the commu
nication objects required by one component to those provided by others. These are simply
drawn as straight lines linking the corresponding objects.

A more in depth description of the Darwin language can be found in (Magee et aI., 1993).

79

www.manaraa.com

264 NG, KRAMER AND MAGEE

3. The Software Architect's Assistant

The Software Architect's Assistant is a visual programming tool which supports the design
and construction of Regis distributed programs. It provides a framework in which software
design can be captured, viewed and modified easily and quickly. Intelligent assistance is
provided throughout the design process, from the sketching of the design diagrams to the
generation of compilable Darwin code. Central to the Assistant is the Darwin sketchpad,
a diagram editor with built-in knowledge of the Darwin syntax. Design diagrams are
automatically tidied up to minimise crossovers between lines. Validation of the design is
also supported, allowing specific program instances to be generated from the definition
of generic software architectures. Support for the run-time monitoring and management
of programs, as demonstrated by our work on ConicDraw (Kramer et aI., 1989), will be
integrated into the environment, hence enabling running programs to be visualised in the
same graphical notation as in the original design. Compositional behaviour analysis tools
(Cheung and Kramer, 1993; 1994) are to be integrated in the future.

The current implementation of the Assistant runs on the Apple Macintosh, and on Sun
Solaris or HP/uX workstations under the Macintosh Application Environment (MAE).

The rest of this paper highlights some of the novel features of the Assistant and the
rationale behind some of our design and implementation decisions, particularly those which
are pertinent to increasing usability and productivity. Using an active badge system as an
example (Harter and Hopper, 1994), a step-by-step demonstration is then presented to
illustrate its use in a typical scenario.

3.1. The user interface

The user interface of the Assistant is based on the theme of structural visualisation. This
emphasis is especially relevant in the case of distributed programs where much of the un
derlying conceptual constructs are topological in nature, and can be naturally captured and
presented in a graphical form (Harel, 1992). Furthermore, given that the basic software
structure of many applications is fairly stable throughout the development process, it also
provides an ideal framework for integrating the various software development and manage
ment activities and facilitates the presentation of a uniform and consistent user interface.

The Assistant allows the software architecture to be viewed from multiple integrated
views (figure 1).

The Configuration Window contains a sketchpad in which the program architecture can
be mapped out using the appropriate tools from the tool palette. The sketchpad displays the
graphical configuration view of Darwin, and is where all editing of the program structure
takes place. When drawing in the sketchpad, the designer is essentially defining a component
type in terms of instances of components and the bindings between them. Controls are
provided for traversing the hierarchy within this view. Multiple configuration windows can
be opened to allow the viewing of different parts of the program at the same time. Each of
these can in turn be split into 2 resizable viewing panes, with the right hand pane used for
displaying, among other information, the Darwin code corresponding to the diagram being
drawn.

80

www.manaraa.com

A CASE TOOL FOR SOFfWARE ARCHITECTURE DESIGN

,
o

Darwin Code . -
.--.~--.~--"!"'I"-'" _ ,,,_1.-.

_ , • • _ It ...
.... _-.-.-.P -I"

. II ~ ,-' Hicra_rchical s_ys,em Vi.....,.,...,ew

11

' .------;<';1 ~
~ . COn<h.iOnaIS:

I :

Figure J. The main windows of the Architect's Assistant.

265

While each sketchpad allows the display and editing of a single component at a time,
the associated Tree Window presents the entire program in a hierarchical tree structure.
This is a type hierarchy which shows all the component types used in the program and the
'include' relationship between them. It is updated automatically whenever the program
structure is modified in the sketchpad. It is useful not only as an indicator of the overall
program structure but can also be used as a navigational aid for browsing the different parts
of the system-selecting the appropriate type in this view will bring up the structure of
that component type in the sketchpad. In addition, it serves as a 'where am I' indicator
by highlighting the part of the tree diagram which corresponds to the component being
displayed in the front-most sketchpad.

3.2. Construction a/program structure

Structuring of the software architecture is one of the principal activities of software design.
We feel strongly that no unnecessary restrictions should be placed on the software designer
in order to accommodate the different working styles of users and also to encourage the
exploration of alternative designs. Hence in the Assistant, both top-down and bottom-up
development are supported as well as flexible ways of modifying the program hierarchy.
This is in contrast with many CASE tools supporting hierarchical design notations which
tend to impose a strict top-down design approach. We have also deliberately made the
use of the Assistant flexible and informal by not enforcing strict adherence to any pre
defined workplan. For instance, there is no requirement to complete the specification of
one component before starting on another.

In the Assistant, top-down decomposition is carried out by repeatedly elaborating the
substructure of composite components. A component is expanded by double-clicking on

81

www.manaraa.com

266 NG, KRAMER AND MAGEE

D lr-•• lf'ew

'!It ~ t'l

o::J-l8B ...
~ , ..

••
" .,.

'" .. ~I .

prog, x and y are 3 component types defined separately.
When instances of x and y are later added to prog, their type
trees are automatically merged into that of prog.

Figure 2. Merging type trees.

its box which zooms the user into its internal structure. Conversely, bottom-up construction
is achieved by zooming up while at the root of the program hierarchy-a new root will be
created at the top of the hierarchy as the parent of the current root. In practice, we find
that a combination of top-down and bottom-up development is often needed in switching
between the different levels of abstractions.

For a system like Regis, it is also not uncommon for a designer to begin work on the
various component hierarchies in isolation and then bring them together to form the overall
program. This is supported by allowing the creation of independent component hierarchies
which can later be merged into the main program tree (figure 2).

If a component ever becomes too complicated, component instances within it can be
easily grouped into a single component by dragging and dropping selected instances into
a new instance. Any bindings to the selected instances will be automatically re-bound to
the new one (figure 3). The reverse of this operation-the 'unwrapping' of a component
to float its internal components to the level above-is also supported through a menu

Figure 3. Grouping components.

82

www.manaraa.com

A CASE mOL FOR SOFTWARE ARCHITECTURE DESIGN 267

command. Together, they allow the user to easily modify the groupings of components
without incurring heavy penalties.

3.3. Program navigation

In supporting the viewing and editing of complex hierarchical structures, it is important
that contextual information be provided so that it is clear where the current area of interest
is in relation to the overall program. In the Assistant this function is served by the Tree
view which automatically highlights the component being edited within the context of the
program hierarchy. In addition, the shape and size of the tree give a good indication of the
structure and complexity of the overall program.

The ability to move around the program hierarchy easily and quickly is also crucial.
Within the sketchpad, navigation is controlled by the up/down buttons in the tool palette, or
the up/down keys on the keyboard. Double-clicking on a component box also provides an
intuitive alternative for dropping the user into the internal structure of the component. An
alternative method for moving up the system hierarchy is to use the 'level' pop-up menu at
the bottom left hand corner of the diagram window (see Appendix). Since the name of the
current component is always visible in the menu, it also serves as an indication of where
we are in the system hierarchy.

For navigation across different parts of the program hierarchy, the user should not be re
quired to traverse through intermediate levels of the hierarchy (c.f., the traversal of hierarch i
cal file structures such as that of Unix). For this task, the Tree view again fulfils an important
role by allowing instant switching from one component to another through a simple mouse
click. This is especially useful in the case of large programs with extensive hierarchies.

3.4. Support for diagram manipulation

Much effort has gone into making diagram editing within the sketchpad as painless a task as
possible. This is important because diagram manipulation is often one of the most tedious
aspects of program design with traditional CASE tools. Although most tools maintain the
connectivity of diagram elements, few provide any further aid in the layout of diagrams.
Our goal in this respect is to enable the desired program structure and layout to be achieved
while requiring minimal effort from the user. We adopt a 'do what I mean' approach,
allowing user actions to be imprecise and making it the tool's responsibility for carrying
out what was intended in the first place.

To give diagrams a regular appearance, all component boxes drawn are made the same
size by default. This also means that just a single mouse click is required for adding and
placing a new component. Similarly, a provide or require port is added to a component by
a single click anywhere within its box. The newly created port (in the form of a black or
white circle) will automatically snap to the side of the box nearest to the mouse click, and
all ports on that side will then be evenly redistributed along its length.

A binding is created by connecting a pair of provide/require ports from either direction.
If a binding is drawn between a port and a component or vice versa, a complementary port
will be automatically created for the component. Connecting a pair of component boxes

83

www.manaraa.com

268 NG, KRAMER AND MAGEE

Figure 4. Creating a binding between 2 components.

will similarly result in the automatic creation of provide and require ports at the ends of the
binding, and hence does away with the need to create ports separately before the bindings.
Again, precision is not required as the user need only to draw a line anywhere within the 2
component boxes. The binding and its ports will be tidied up by the tool to avoid crossovers
with existing bindings (figure 4). This automated layout facility is described in more detail
in Section 3.5.

The Assistant provides dedicated tools in the tool palette for the creation and editing of
the different types of Darwin objects. While this is an intuitive interface for tool selection
and invocation, it can be inefficient and distracting due to the time wasted in moving the
mouse between the drawing area and the palette for tool switching. We have tackled this
problem in 2 ways. The first provides a quicker interface for tool selection which dispenses
with the need to use the mouse: the 'tab' key on the keyboard advances tool selection in
the palette, which 'wraps round' to the first tool when the last tool in the palette is reached.
Hitting 'shift-tab' selects the previous tool. This use of the keyboard for tool selection
enables a two-handed approach to diagram editing: the mouse can remain in the drawing
area to edit the drawing while the other hand selects the appropriate tool.

The second approach reduces the need for tool switching by overloading the functionality
of the tools. For example, the provide tool can be used for creating a require port by holding
down the option key, and vice versa. Furthermore, if clicked on the background of the
sketchpad, the provide and require tools add the corresponding services (e.g., 1111 location I)
to the component type being edited, hence dispensing with the need for additional tools in
the palette. In a similar vein, the arrow tool, normally used for moving and resizing, also
doubles up as the 'magnet' tool for box alignment (see Section 3.5) as well as a short-cut
for editing the information associated with Darwin objects (double-clicking on the name of
an object brings up the corresponding Info dialog for that object).

3.5. Automated diagram layout

A comprehensive set of automated and manual aids is provided for the editing of Darwin
configuration diagrams. Two levels of automated support are available. The first deals with

84

www.manaraa.com

A CASE TOOL FOR SOFfWARE ARCHITECTURE DESIGN 269

the biggest problem of graph layout-the untangling of crossovers between bindings. The
Assistant does this by relocating the provide and require ports at the ends of bindings and
then distributing them along each face of a component box to give a regular appearance.
The component boxes themselves are left unchanged. The algorithm used is based on our
earlier work on ConicDraw but with its overall speed greatly improved by only cleaning
up the parts of the diagram which have been modified since the last tidy-up. This makes it
feasible for the operation to be invoked after every modification to the diagram layout such
as the moving or resizing of a box. Consequently, configuration diagrams in the sketchpad
are always in the tidied state. This facility has proven to be a major time-saver as it means
that the only manual layout activity to be performed by the user is the placement of the
component boxes, which determines the overall structure of a diagram.

The second level of automated support takes care of the auto-placement of the component
boxes in a configuration graph, with the objective of producing a compact diagram with
minimal crossovers between bindings and component boxes. The heuristic-based algorithm
is used to generate the initial diagrams of imported Darwin code, and is also useful in
situations where the large number of components and bindings makes it difficult for the
human eye to easily come up with an aesthetically pleasing layout. The drawback, however,
is that it is liable to produce 'unstable' layout, i.e., a small modification to the diagram may
cause the algorithm to produce a drastically different layout. As a result, this facility is
invoked only on demand by the user.

A common operation in diagram layout is the alignment of the component boxes. To
simplify this task, the sketchpad has a built-in invisible alignment grid which constrains the
placement of nodes in a diagram. When a component is created or subsequently moved, its
top-left corner automatically snaps to the nearest point in the grid. Hence great precision is
not required when placing and aligning components. The coarseness of the grid can be set
by the user or the grid can be turned off altogether to permit finer control over the layout of
a diagram. The 'magnet' tool (figure 5) is a further aid for aligning groups of components
in either rows, columns or rings.

G
() -' o ..

To place the 4 boxes A, B, C and D into a ring, the user first selects
them and then draws a circle with the 'magnet' tool. The boxes will
be pulled onto the circle and distributed evenly along its
circumference. As with all other layout changes, the bindings in the
diagram are automatically cleaned up after the operation.

Figure 5. Aligning components with the magnet tool.

85

www.manaraa.com

270 NG, KRAMER AND MAGEE

3.6. Consistency management

Much work in software design are bookkeeping tasks, ensuring that information defined
in one part of the system is consistent with that in another. These are tasks which are
accomplished much quicker by the tool and with fewer errors. With the Assistant, we have
attempted to automate all such bookkeeping work to ensure that consistency is maintained
at all times. Whenever possible, any required information is inferred automatically from
existing data, thus obviating the need for data re-entry and any subsequent error checking
that entails. For example, if a component's instance is altered in one part of the program,
the change is immediately reflected in all other instances of the same type.

Apart from structural consistency, the Assistant also maintains the consistency of data
types of connected ports. For instance, changing the data type of a port will cause the new
information to be propagated to all ports which are bound to it throughout the program
hierarchy. When two ports are connected and one is undefined, the data type of the defined
port will be copied automatically to the undefined one as well as all other ones to which it
is connected. Connecting 2 incompatible ports results in a warning and the option of either
copying the port type of the provide port to the require port, or vice versa. This time-saving
facility is particularly useful when the program hierarchy is large, where the user would
otherwise have to go through the entire hierarchy to make the changes manually.

Consistency within the Assistant is enforced at the point of data entry, hence there is
no need for a separate error checking phase-all accepted information is consistent at any
point in time.

3.7. Design validation

A Darwin specification essentially describes a generic structure of a component type. The
instantiated structure at run-time is determined by the actual parameters passed to the com
ponent instance and the evaluation of its conditional guards, and can be difficult to visualise
at design time. As a design validation aid, the Assistant facilitates the testing of compo
nent descriptions against different parameter values, presenting as results the instantiated
configurations of the component which are reflected back to the user in a graphical form
(figure 6). This kind of 'what-if' scenario testing should allow many errors to be caught
at an early stage without needing to go through the full compilation and execution cycles
of program development. It is particularly useful for the validation of complex compo
nents which make use of Darwin's more advance facilities such as the parameterisation of
components, replication of component instances and communication objects, conditional
configurations with guards, and even recursive definition of components.

3.B. Data entry and retrieval

Much information is generated during the system development process. Apart from the
'core' information-that is the actual specification, design and code of the system-there
is a huge amount of related information that needs to be maintained. Project status and
history, design decisions, non-functional requirements, comments for source code, version
control information are typical examples.

86

www.manaraa.com

A CASE mOL FOR SOFfWARE ARCHITECTURE DESIGN

Generic Architecture

IIIr-ray Pfn) . pollet'l

'M' 1l 1.ui::
D I~:

tClr"'U 1 10 .. n-l (
i .Mt '1l1 .1-1 f
bi ...

..... PU. I. CI'ItP'lt -- lC . h~t[1I '
D. OUtSNtI11 •• 'U].ll1CNt ,)

tl,~tPUt--.~tl

• .utlll .- D.~l: l

.----~~;~---::~-----, ~~----.

-,............--~mEJ)
----------Specific Program Instances

Figure 6. Generating program instances from a generic software architecture.

271

A clear and uniform approach to information capture and retrieval is vital if the user
is to be able to enter new information or retrieve existing data easily without needing to
worry about unnecessary details such as where and how the information is stored in the file
system. Equally important would be a navigation system which can take the user through
the complex information space consisting of varied but related pieces of data. Conceptually,
within the Assistant, we use the Darwin configuration diagrams as the basic organisational
structure onto which information, or attributes, can be attached (figure 7). This allows all
information related to an object to be 'packaged' with the object's representation on screen.
It also means that the same navigational aids for the traversal of the program hierarchy is
used for traversing the attribute information space. An object attribute is retrieved using
the attribute tool through a pop-up menu (figure 7), and is displayed on the right-hand pane
of the sketchpad window. A component's Darwin description is treated as an attribute that
belongs to that component.

Figure 7. Component attributes.

87

www.manaraa.com

272 NG, KRAMER AND MAGEE

The Assistant's attribute mechanism is extensible to allow capture of attribute types not
originally envisaged. Entry of attribute details is optional so the user can enter as much
or as little information for any particular project. Although currently limited to textual
attributes, we hope to provide support for other kinds of structured data such as graphics,
forms and charts. Attributes entered by the user are automatically collated by the Assistant
and written out as a formatted report. The report includes, for each composite component
type, its configuration diagram and Darwin code together with all attributes belonging to
its sub-components. For a primitive component, the report includes its implementation in
C++. All diagrams are automatically scaled to fit the printed page if necessary.

By automating information collation and formatting, the Assistant's report generator
takes much of the drudgery out of report preparation. Since the report is written in the Rich
Text Format (RTF) which is readable by most popular commercial word processors, further
editing to the contents and layout is possible after the report has been generated.

4. Case study-An active badge system

An active badge system has been implemented in the Regis programming environment.
Active Badges emit and receive infrared signals which are received/transmitted by a network
of infrared sensors connected to workstations. The system permits the location and paging
of badge wearers within a building.

In our implementation, the top-level of the badge system is made up of 3 Darwin com
ponents, namely comexec, sensornet and locate (figure 9). Location, where, trace and
command are the open systems interfaces of the badge system which enable communica
tion with external programs, and are to be registered with a name server (Kramer et aI. , 1989).
Bindings may be made dynamically by a third-party (configuration manager) at runtime.

Comexec provides the badge command execution service--commands are issued to
badges to set off its internal beeper or to illuminate LEOs. The Darwin component in
terface specification requires the specification of the types of these services (enclosed in
angle brackets). By convention, the first word of the type specification is the interaction
mechanism class. For example, command accepts entry calls with a request of type comT
and a reply of repT.

Figure 8. The active badge system.

88

www.manaraa.com

A CASE IDOL FOR SOFfWARE ARCHITECTURE DESIGN

sensome

Figure 9. The Regis implementation of the badge system.

sensout

sensln

Figure 10. The sensornet component.

CClqK)DeDt aenaoroat (tnt n) (
prO"f"ld. atm.eln <pOrt a:cuq>;
reqQ.lre .en.out <pOrt sma~;

arraY' P[n) :poll.r;
lDat

H:D1X;
O:dQmux;

toraH i,O .. D-1 (

)
biDd

1nat P[1] " 1+1;
biDd

&~~~t~~rt~ :: M)':"'~~;

H.output -- ean.out:
.en.in -- O. input:

273

To execute a command, it is necessary to first locate a badge. Consequently, comexec
requires the location service which is provided by the component locate. Location infor
mation in the badge system is an event stream where an event represents a change of badge
location. Thus the interaction mechanism for location is event and the data type of each
event is bstatus. Similarly, to execute the badge once found, the component must send
a message to the sensor network. The requirement for this service is represented by out
put which uses the Regis port message transmission primitives. Note that the component
comexec does not need to know the names of external services or where they may be found.
It may be implemented and tested independently of the rest of the badge system. We call
this property context independence. It permits the reuse of components during construction
and simplifies replacement during maintenance.

The composite component sensornet controls the interface to the network of infrared
badge sensors. Each requirement (empty circle) in this case is for a port (named output)
to send messages to, and each provision (filled in circle) is a port from which a component
receives messages (named input). Requirements which cannot be satisfied inside the com
ponent can be made visible at a higher level by binding them to an interface requirement

89

www.manaraa.com

274 NG, KRAMER AND MAGEE

as has been done in the example for multiplexer M requirement output which is bound to
sensout. Similarly services provided internally which are required outside are bound to an
interface service provision e.g., sensin-D.input.

Each poller component is located on a different workstation and controls a multidrop
RS232 line of sensors. The poller component requires a service to output badge location
sighting messages and provides an input on which to transmit command messages. In
general, many requirements may be bound to a single provided service. However, in this
case each pOller instance output is bound to a separate input port to allow the multiplex
component M to identify the sensor network in the outgoing message. Pollers are distributed
by the expression instP[i]@i + 1 which locates each instance P[i] on a separate machine
i + 1. The integer machine identifiers are mapped to real workstations by the Regis runtime
system. The mapping permits program portability.

From the example, it can be seen that components may be parameterised and that param
eters can be used to determine the internal structure of composite components. In this case
the parameter determines the number of poller instances.

5. Constructing the badge system with the Architect's Assistant

In this section we present a step-by-step demonstration of how the Architect's Assistant is
used in the construction of the active badge system described above.

-'

Creating a component. Initially, the Assistant presents a blank or undefined type which
corresponds to the 'root' of the program being built. We have named the program 'badge',
as indicated by the name of the sketchpad window. The badge component type is elaborated
by sketching out its internal structure within this window. A component instance is created
by drawing a box with the component tool. In this case we are creating an instance of the
sensornet.

90

www.manaraa.com

A CASE mOL FOR SOFfWARE ARCHITEcruRE DESIGN 275

• UI. 1.111 l.~1111 I lIlnfowl ..eII.
~

· ~ N. I_·.·

r- -'- I

CJ 'M'

~ r""/~
,

I ... 1--- I

~ r., I I

~ Olt""_".",
r-

I.,~_ I""

I~ .. - i I I I
iiII . ~_r''" j I
"'I ••• I I
lw-tl .. I I

~ Ii'-~'I ." ,_h: ~~

0"',
~ ~

O W_br

~ I ~-I I ;; I; .J

t- :t,~_D
''''

Naming a component. Information related to this component, such as its type and instance
name, array bounds, actual and formal parameters, is entered through a dialog box. Any of
this information can be left undefined initially and filled in later.

• 1111 [lilt l 1 c.lftm"" IItII'IHWI

• •
~

-'''''E 1.,..,. "..-.-, .,..

_'a.IIIOOI (

CJ .~.

~
. -'. ,

~ ., om •• r-
" ~ r-

I

~ ,tr
Trut+ew

2.. E:III-~.

t

Naming a component (2). After despatching the dialog, the component's type name will
be displayed within its box as well as in the tree view. Options are available for displaying
the component instance name and/or its type name within the sketchpad. Note that the
Darwin code to the right of the sketchpad has been updated automatically.

91

www.manaraa.com

276 NG, KRAMER AND MAGEE

• III. 'Oi' llltaul c...... 11116OOUIi:
~

-1,..._ '_ '
to _.- j

'M'

~
. -'. ,

~ - IIoll'ft.ar",,1 , • 10: t-

I~

~ .., -.
" •• UIiIIIIII

~ ~

Editing component interface. Communication objects for sensornet can be created ex
plicitly with the provide or require tools by clicking anywhere inside its box. It will be
fixed to the nearest side of the box.

...
D

· 1 · _ •
· l nc .~ ·I ... I.II_·

'_I

Creating a binding. Bindings are created by drawing a line between a pair of comple
mentary provide/require objects. These snap to the appropriate sides of the components and
are automatically positioned to avoid any crossovers with existing bindings. Alternatively,
if we connect a pair of components, communication objects are automatically generated on
the components at each end of the binding.

92

www.manaraa.com

A CASE TOOL FOR SOFfW ARE ARCHITECTURE DESIGN

...
.~ . .. _t.

L 1_ ... , '-.
" .. '_'_l~l.
Cw~'_._I",
c~-~v.c:..

277

Refining a component. This shows the state of the badge component after comexec and
more bindings have been added. Composite components are drawn as shadowed boxes, as
opposed to plain boxes for primitive components .

.. .. m r.l l lid IIIIlftd . t ."IIHIIIw •
'lUnr .. '

! tEE:D ra:=:J -\-\(..... ,.
-~"'.

]: -'~ -'.
@ I

~
-0: -
I;

~ . ~
tr"."' ••

~ -,~ ~ .,

t ~

Refining a component (2). To create sub-components within sensornet, we first double
click on its box. This drops us inside the component which is initially empty, apart from
its interface which is represented by the interface boxes sensin and sensout. These are
generated automatically by the Assistant based on what has previously been defined at the
level above. The structure of sensornet can now be elaborated as descibed earlier.

93

www.manaraa.com

278 NG, KRAMER AND MAGEE

fl •• (OJ' to!l .. 1 '.Iau WIlMlIfIl.l'

' Of1II.l

~ IIa:=:J lED
...... t_ a _ ... _'_I.

~
_'M _ 'ft.
-'~

~
_I.

~
I,,... : P'k:~ ",n I

-.
I'" - - - 1= Et'~ f-' 10-

lIB
j;-'
-.. ..

D..,u', ,,,-I_ I

~ ._.
I []

~ -§
.....:

If·
I" .

Reusing a component. The poller component needed for sensomet has previously been
defined in another program (comms.1T). It can be reused using the library browser of
the Architect's Assistant. This presents a list of all component types defined in commS.1T
together with their corresponding diagrams and descriptions.

· !'I'C I" ·_ iIIII ·
. , • .. 11 •

-'~(

.~
~ ""-.

I, .. IIIII'W

Reusing a component (2). Using the standard copy-and-paste technique, poller can be
copied from the library and included in the sensomet component under development. By
reusing a component, we pick up not only its diagram and code but also any additional
information associated with it.

94

www.manaraa.com

A CASE mOL FOR SOFfW ARE ARCHITECTURE DESIGN 279

_Mlel,

Defining a primitive component. The implementation of a primitive component (in the
form of C++ code) is displayed to the right of a sketchpad when we enter such a component.
Skeleton C++ code in the form of its class constructor is generated automatically by the
Assistant for further elaboration by the user. Here we have entered the primitive component
mux.

Attaching attributes to components. The right-hand pane of the sketchpad window dis
plays attributes associated with the corresponding component in the sketchpad. Darwin
code, c++ code (i.e., implementation) and comments are built-in attributes of components.
The attribute pop-up menu allows switching between the different attributes.

95

www.manaraa.com

280 NG, KRAMER AND MAGEE

,, - -

"

Creating new attribute types. New attribute types can be created to allow entry of new
kinds of information. To facilitate the recording of formal specifications with Darwin
components, we enter the name ofthe attribute type (,Formal Spec') in the attribute dialog.
From then on 'Formal Spec' will appear as a new item in the attribute pop-up menu, thus
allowing the display and entry of formal specifications within the attribute pane.

_ 0.. '.)1 ,

TrnUjltw

Navigation. There are several ways of traversing the program hierarchy, one of which is
via the pop-up menu at the bootom-left of the sketchpad. This shows the path from the root
of the hierarchy to the current component. Selecting an item from this menu switches the
display of the sketchpad to this component.

96

www.manaraa.com

A CASE mOL FOR SOFfW ARE ARCHITECTURE DESIGN

.. ~,- .- ~ .. .-............... .
-' .. -- - ,~\(....... -'.
-'~

-'(-,...",.~ . . ~,
" -. .. ""'. , -. " ... ~ ... ,-,,~. " ~,--'. -,"- ~ .
.... u..o\- .. ,_'.

281

Navigation (2). Alternatively, the tree view also serves as a navigation tool. Clicking on
a component, in this case sensornet, will switch the display of the sketchpad directly to the
corresponding component.

6. Conclusion

In this paper we have described the Software Architect's Assistant, a graphical CASE
tool for the design and construction of distributed systems. The Assistant encourages a
constructive approach to program design (Kramer et aI., 1990) in which systems are built
up through the composition of software components. Unlike other methodologies in which
the design architecture is discarded after system construction, the software architecture of
a Regis system is maintained from the early design stage right through to the evolution
of the running program. This emphasis on structure is mirrored in the Assistant which
employs the visualisation of software architecture as the centrepiece of its user interface. It
provides an ideal structuring tool for organising development information, a skeleton onto
which information can be attached. At the same time, it allows the underlying data storage
mechanism to be hidden from the user.

Within the ARES l project, we are currently investigating the use of the Darwin language
to provide support for variance in the architecture of product families. An automated tool
such as the Assistant will allow the instantiated architectures of the family members to be
visualised and validated before the eventual systems are constructed.

From a tool implementation's perspective, our main concern has been to maximise us
ability and efficiency. Previous experience as both builders and users of software tools have
convinced us that the key to this goal is to extend the level and scope of the following:

Automation. In many ways, software developers have failed to exploit the full potential
offered by the increasing power of computer hardware. Our approach to tool building
has been to offload from the user all tasks that can be performed by the machine. CASE

97

www.manaraa.com

282 NG, KRAMER AND MAGEE

tools should play the role of intelligent assistants, working with the human designer and
automating any bookkeeping task that does not require human intervention. Only then
can the full benefits of tool deployment be achieved, in terms of productivity and quality
improvement and reduction in human effort and errors. The automated facilities for diagram
layout, consistency management and report generation are all part of our effort towards this
goal.

Flexibility. Although method-specific tools should provide guidance to help the user
towards a design solution, it must not do so in a way that constrains his style of working.
The user should be free to use his own initiative and follow any sensible design paths.
Strict conformance to any prescribed workplan should be avoided in order to encourage
exploration of alternative design and accommodate individual designer's working styles.
Experience has shown thattools which put the user in a straight-jacket will not gain widescale
use. In the design of the Assistant, a conscious decision was made to relax the rules
governing when and in what order operations can be performed. The user is free to work in
a top-down or bottom-up manner, or a combination of both. The entry of partial, incomplete
information is also permitted, allowing different parts of the system to be refined and
elaborated concurrently. Where it is sensible, we have also allowed the same information to
be entered in different locations. For instance, the interface of a component can be defined
either when defining the internal structure of the component type itself, or on an instance
of that component type.

Speed. The performance of a software tool is critical to its success. This is especially true
for visual, interactive tools where a delay of a fraction of a second will often be perceptible.
A sluggish tool not only aggravates user frustration but tends to break up the user's flow
of thought and concentration. In building the Assistant, we have endeavoured to optimise
its performance in all areas, from the design of efficient data structures and algorithms
to the exploitation of machine idle time and scheduling of background tasks so that any
potential delays are kept to a minimum and hidden from the user. The automatic tidy-up
of bindings, for example, is performed at idle time so that it does not interfere with user
operations. Similarly, Darwin code generation is done only when the code view is visible
and in idle time. In practice, however, these operations are usually completed so quickly
they appear to the user as though they are performed immediately after every diagram
modification.

The importance of a well-designed user interface cannot be underplayed. For a tool which
spans several phases of the development process, a uniform and consistent interface helps to
ease the learning curve and maintain the user's orientation across the different stages. It will
also help to strengthen the sense of integration between the different software development
and management tasks. The intended mental model can be further reinforced through a
user interface modelled closely on the subject matter, along with carefully designed data
representation and the shielding of unnecessary details.

Although the Architect's Assistant has been specially tailored for Regis distributed pro
grams, most of the ideas and concepts it embodies are equally applicable to a wide class
of CASE tools, especially those supporting design methods with structured, hierarchical
graphical notations.

98

www.manaraa.com

A CASE mOL FOR SOFfWARE ARCHITECTURE DESIGN 283

Note

I. ARES (Architectural Reasoning for Embedded Software) is an ESPRIT project funded by the Commission of
the European Communities (CEC).

Acknowledgments

We gratefully acknowledge the advice of our colleagues in the Distributed Software Engineering Research Section,
and the financial support provided by the CEC (ESPRIT project ARES-20477), EPSRC (grant ref. GRlJ 52693
and GR/J 87022) and the DTI (grant ref. IED4/410/36/002).

References

AVS, 1992. AVS Developer's Guide (Release 4.0). Advanced Visual Systems Inc. Part n. 320-0013-02, Rev B.
Barstow, D.R. 1984. A perspective on automatic programming. AI Magazine, 5(1):5-27.
Beguelin, A., Dongarra, J., Geist, G., Manchek, R., and Sunderam, V. 1994. HeNCE: A users' guide (Version

2.0). Carnegie Mellon University.
Cheung, S.c. and Kramer, J. 1993. Enhancing compositional analysis with context constraints. Presented at

Symposium on the Foundations of Software Engineering, Los Angeles, pp. 115-125.
Cheung, S.c. and Kramer, J. 1994. Tractable dataflow analysis for distributed systems. IEEE Transactions on

Software Engineering, 20(8):579-593.
Haddley, N. and Sommerville, I. 1990. Integrated support for system design. Software Engineering Journal, pp.

331-338.
Harel, D. 1987. A visual formalism for complex systems. Science of Computer Programming, Vol. 8.
Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi, M., Sherman, R., and Shtul-Trauring, A. 1988. STATEM

ATE: A working environment forthe development of complex reactive systems. Presented at 10th International
Conference on Software Engineering, pp. 396-406.

Harel, D. 1992. Biting the silver bullet-Toward a brighter future for system development. IEEE Computer,
25(1):8-20.

Harter, A. and Hopper, A. 1994. A distributed location system for the active office. IEEE Network Special Issue
on Distributed Systems for Telecommunications.

Homer, P., and Schlichting, R. 1994. Configuring scientific applications in a heterogeneous distributed system,
Presented at 2nd International Workshop on Configurable Distributed Systems, Pittsburgh, pp. 159-168.

Kramer, J. and Magee, J. 1985. Dynamic configuration for distributed systems. IEEE Transactions on Software
Engineering, SE-II(4):424--436.

Kramer, J., Magee, J., and Ng, K. 1989. Graphical configuration programming. IEEE Computer, 22(10):53-65.
Kramer, J., Magee, J., and Finkelstein, A. 1990. A constructive design approach to the design of distributed

systems. Presented at 10th International Conference on Distributed Computing Systems, Paris, pp. 580-587.
Kramer, J., Magee, J., and Sloman, M. 1992. Configuring distributed systems. Presented at 5th ACM SIGOPS

Workshop on Models and Paradigms for Distributed Systems Structuring, Mont Saint-Michel, France.
Kramer, J., Magee, J., Sloman, M., and Dulay, N. 1992. Configuring object-based distributed programs in REX.

lEE Software Engineering Journal, 7(2):73-82.

Logica, 1989. MacCadd Version 5.O-A new generation of CASE for the apple macintosh, Logica UK Ltd.
Magee, 1., Kramer. 1., and Sloman, M. 1989. Constructing distributed systems in conic. IEEE Transactions on

Software Engineering, SE-15(6):663-675.
Magee, 1., Dulay, N., and Kramer, J. 1993. Structuring parallel and distributed programs. lEE Software Engineering

Journal, 8(2):73-82.

Magee, J., Dulay, N., and Kramer, 1. 1994. Regis: A constructive development environment for distributed
programs. Distributed Systems Engineering Journal, 1(5):304-312.

Martin, c.F. 1988. Second-generation CASE tools: A challenge to vendors. IEEE Software, 5(2):46-49.

99

www.manaraa.com

284 NG, KRAMER AND MAGEE

Newton, P. and Browne, J.e. 1992. The CODE 2.0 graphical parallel programming language, Presented at ACM
Int. Conf. on Supercomputing.

ObjecTime, 1993. ObjecTime Overview. ObjecTime Limited OT-R4IDV40-113.
Rich, e. and Waters, R. 1988. Automatic programming: Myths and prospects. IEEE Computer, 21(8):40-51.
Stovsky, M.P. and Weide, B.W. 1987. STILE: A graphical design and development environment. Presented at

COMPCON, San Francisco.
Sunderam, VS. 1990. PVM: A framework for parallel distributed computing. Concurreny-Practice and Experi

ence, 2(4):315-339.
Wasserman, A.I. and Pircher, P.A. 1987. A graphical, extensible integrated environment for software development.

ACM SIGPLAN Notices (Proceedings of the ACM SIGSOFTlSlGPlAN Software Engineering Symposium on
Practical Software Development Environments), 22(1):131-142.

100

www.manaraa.com

Automated Software Engineering 3, 285-307 (1996)
© 1996 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Knowledge-Based Software Engineering
Environment for Reusable Software Requirements
and Architectures

H. GOMAA, L. KERSCHBERG, V. SUGUMARAN, C. BOSCH, I. TAVAKOLI AND L. O'HARA
Center for Information Systems Integration and Evolution, Department of Information and Software Systems
Engineering, George Mason University, Fairfax, Virginia, 22030-4444

Abstract. This paper describes a prototype Knowledge-Based Software Engineering Environment used to
demonstrate the concepts of reuse of software requirements and software architectures. The prototype envi
ronment, which is application-domain independent, is used to support the development of domain models and
to generate target system specifications from them. The prototype environment consists of an integrated set of
commercial-off-the-shelf software tools and custom developed software tools.

The concept of reuse is prevalent at several levels of the domain modeling method and prototype environment.
The environment itself is domain-independent thereby supporting the specification of diverse application domain
models. The domain modeling method specifies a family of systems rather than a single system; features character
ize the variations in functional requirements supported by the family and individual family members are specified
by the features they are to support. The knowledge-based approach to target system generation provides the rules
for generating target system specifications from the domain model; target system specifications, themselves, may
be stored in an object repository for subsequent retrieval and reuse.

Keywords: software engineering environments, software reuse, software architecture, knowledge-based soft
ware engineering, domain modeling

1. Introduction

The goal oflarge scale software reuse remains elusive in spite of efforts made during the past
few years and apart from certain specific domains such as mathematical libraries. Most work
in software reuse has addressed composition technology (Biggerstaff and Richter, 1987)
where components are considered to be predominantly atomic and ideally unchanged when
reused, although some adaptation may be required. Deriving new software systems from
existing ones involves composition, where the components are the building blocks used in
constructing the new system. This approach necessitates a library of reusable components
and some approach for indexing, locating and distinguishing among similar components
(Prieto-Diaz and Freeman, 1987). Problems with the reuse by composition approach include
managing the large number of components a reuse library is likely to contain, and the
difficulty in distinguishing among similar though not identical components. Having located
and selected a component from the library, it is then the designer's responsibility to determine
how this component fits into the new system.

This paper describes an approach that attempts to overcome these problems by taking
an application domain perspective within the context of an evolutionary development life

www.manaraa.com

286 GOMAAET AL.

cycle. At George Mason University, a project is underway to support software engineering
lifecycles, methods, and environments to support software reuse at the requirements and
design phases of the software lifecycle in addition to the coding phase (Biggerstaff and
Richter, 1987). A reuse-oriented software lifecycle, the Evolutionary Domain Lifecycle
(Gomaa et aI., 1989; Gomaa and Kerrchberg, 1991), has been proposed, which is a highly
iterative lifecycle that takes an application domain perspective allowing the development
of families of systems. A domain analysis and modeling method has also been developed
(Gomaa, 1992a; Gomaa, 1993a) and applied to several application domains including
NASA's Payload Operations Control Center (POCC) domain. After giving an overview
of the method, this paper describes a prototype Knowledge-Based Software Engineering
Environment, which has been developed to demonstrate the concepts of reusable software
requirements and architectures. Both the method and prototype environment are illustrated
with examples from NASAs POCC domain.

2. Domain modeling

2.1. Evolutionary domain life cycle

The Evolutionary Domain Life Cycle (EDLC) Model (Gomaa and Kerschberg, 1991) is a
highly iterative software life cycle model that eliminates the traditional distinction between
software development and maintenance. Furthermore, because new software systems are
often outgrowths of existing ones, the EDLC model takes an application domain perspective
facilitating the development of families of systems (Parnas, 1979). The EDLC consists of
the following major activities (figure 1):

1. Domain modeling. Domain modeling refers to the development of reusable require
ments, a reusable specification and a reusable architecture for the family of systems that
constitute the application domain. Domain specific reusable components are developed
and stored in an object repository.

2. Target system generation. Given the requirements of an individual target system (one
of the members of the family), the target system specification is generated by tailoring
the reusable specification and the target system architecture is generated by tailoring
the reusable architecture. The component types to be included in the target system
are selected based on the target system architecture. The concept of generating target
systems from a generic specification and/or architecture has been investigated by several
researchers (Batory, 1989; Batory and O'Malley, 1992; Kang et aI., 1990; Pyster, 1990;
Lubars, 1989).

2.2. Domain modeling method

2.2.1. Overview. In this paper, the emphasis is on domain modeling at the analysis
phase. A Domain Model is a mUltiple view object-oriented model, also referred to as a
problem-oriented architecture, for the application domain that reflects the common aspects
and variations among the members of the family of systems that constitute the domain.

102

www.manaraa.com

KNOWLEDGE-BASED SOFTWARE 287

Application
Realable SpecifiCition, Domain

laformation Reuublt Architecture,
Domain Reusable Compone.t Type. ----.. Modeling -1 ,

Object
Repository

-- 1-'
Target System Target Tlrget Syste .. Rrquiremtnts

System ~

Generation

I
Unsatisfied Rtquiremeah, Erron, Adaptations

Figure J. Evolutionary domain life cycle model.

Since it is considered that the object-oriented model of software development is more
conducive to evolution and change, the domain modeling approach takes an object-oriented
perspective. The goal is to apply object-oriented concepts and extend them to application
domains.

The domain modeling method is similar to other object-oriented methods when used
for analyzing and modeling a single system (e.g., Rumbaugh et aI., 1991; Schlaer and
Mellor, 1988). Its novelty is the way it extends object-oriented methods to model families
of systems. The method allows the explicit modeling of the similarities and variations in a
family of systems.

In a domain model, an application domain is represented by means of multiple views, such
that each view presents a different perspective on the application domain. This modeling
approach is in contrast to Telos, which is a language-oriented approach for defining multiple
view information systems (Mylopoulos et aI., 1990).

Four of the views, the aggregation hierarchy, the object communication diagrams, the
generalization/specialization hierarchy, and the state transition diagrams have similar coun
terparts in other object-oriented methods used for modeling single systems. However, in our
domain modeling method, the aggregation hierarchy is also used to model optional object
types, which are used by some but not necessarily all members of the family of systems.
Furthermore, the generalization/specialization hierarchy is also used to model variants of
an object type, which are used by different members of the family of systems. The fifth
view, the feature/object dependency view, is used to represent explicitly the variations cap
tured in the domain model; each feature is associated with the optional and variant object
types needed to support it. This provides the basis for defining which target systems can be
generated from the domain model.

The multiple views in the domain modeling method (Gomaa, 1992) are described below,
with examples from the NASA Payload Operations Control Center Domain (POCC). The
POCC application domain comprises the family of ground station command and control
systems for unmanned satellites, which process and display satellite telemetry data and send
commands up to the satellites.

103

www.manaraa.com

288

Telemetry

Payload Operations
Control Center

(POCC) Domain

Command

Figure 2. Aggregation hierarchy from payload operations control center domain.

GOMAAETAL.

History

2.2.2. Aggregation hierarchy. The Aggregation Hierarchy (AH) is used to decompose
complex aggregate object types into less complex component object types eventually leading
to simple object types at the leaves of the hierarchy. Object types are kernel, i.e., required in
all target systems, or optional, only required in some target systems. At the upper levels of
the hierarchy, aggregate object types represent subsystems, while the leaves of the hierarchy
contain simple object types.

An example of the Aggregation Hierarchy for the Payload Operations Control Center
Domain (POCC) is shown in figure 2. This whole domain is modeled as one aggregate
object type called Payload Operations Control Center Domain. Payload Operations Con
trol Center Domain contains four aggregate object types, which represent the four major
subsystems of this application domain. These are Telemetry, Command, Flight Operations
Analyst, and History. Each of these four subsystems in turn contains further aggregate or
simple object types.

2.2.3. Object communication diagrams. Object types in the real world are modeled as
concurrent tasks (Jackson, 1983), which communicate with each other using messages. The
message interface between object types may be loosely coupled or tightly coupled (Gomaa,
1993b). The object communication diagrams (OCDs), which are hierarchically structured,
show how object types communicate with each other. The levels of decomposition of OCDs
correspond to the levels of the Aggregation Hierarchy. An example object communication
diagram from the POCC domain is shown in figure 3.

The top level Object Communication Diagram for the POCC domain is shown in figure 3.
In this figure, the bubbles represent object types, the boxes represent external entities,
and the arcs represent message interfaces. The * in figure 3 means that these aggregate
object types are decomposed further. As the decomposition of the Object Communication
Diagrams corresponds to that of the Aggregation Hierarchy, figure 3 contains the same four
subsystems as figure 2. In addition, figure 3 shows the message communication among the
four subsystems, as well as to and from the external entities. Incoming telemetry data from
the spacecraft comes from the Telemetry and Command entity to the Telemetry subsystem.
GMT provides a timestamp. Recorded telemetry data is also input from Recorder Utility
Processor System (RUPS).

104

www.manaraa.com

KNOWLEDGE-BASED SOFfW ARE

Telemetry
ond

System
(RUPS)

NelWOIt
ConlrOl
Cenler
(Nee)

Responoe-
.. _SUIus

NCC_ _
OI"_NCCJi"""

G wich
MeonTime

(GMT)

Flipl
Operations

A110Iyst
(FOA)

·Commoncl
Manasement

Sy
(CMS)

Figure 3. Level 0 object communication diagram from payload operations control center domain.

289

The Telemetry subsystem is responsible for processing the telemetry data received from
the satellite, which includes converting it to engineering units and generating alarms for
sensor values that are out of range, storing current values of the raw and processed telemetry
data, and sending this data to the History subsystem for archival storage. The Telemetry
subsystem also responds to requests for current telemetry and alarm data from the Flight
Operations Analyst (FOA) User Interface subsystem, which displays it to the analyst. The
FOA may also request to view historical telemetry data from the History subsystem. In
addition, the FOA can prepare spacecraft commands, referred to as real-time commands,
which are passed on to the Command Subsystem. The Command Subsystem also receives
command loads from an external subsystem, the Command Management System. The
Command Subsystem sends command loads and real-time commands to the Telemetry
Subsystem for uploading to the satellite; it also monitors the progress of command execution
on board the satellite.

2.2.4. State transition diagrams. As each object type is modeled as a sequential task, an
object type may be defined by means of a finite state machine, and represented by a state
transition diagram, whose execution is by definition strictly sequential.

105

www.manaraa.com

290

Tclcmclry-Expcctcd-Value
(expected - arrived)

GOMAAETAL.

Tclcmetry-Expecled-Value
(ex not ~ arrived)

Figure 4. State transition diagram from payload operations control center domain.

An example state transition diagram from the POCC domain is given for the Earthbound
Command Load Verifier object type in figure 4. When a command is sent up to the satellite
to be executed, there are several states for verifying that the command was executed as
expected. First a command received status message needs to be checked to determine
that the command did arrive at the satellite, next a command executed status message is
checked to determine that the command was executed. Finally, the appropriate telemetry
data is checked against an expected value to determine whether the command produced
the desired result. If any of these checks fails to yield the expected result, the command
verification is aborted.

2.2.5. Generalization/specialization hierarchies. As the requirements of a given kernel
or optional object type are changed to meet the specific needs of a target system, the object
type may be specialized (Meyer, 1987). The variants of a domain object type are specified
in a Generalization/Specialization Hierarchy (GSH).

An example Generalization/Specialization Hierarchy from the POCC domain is shown
in figure 5 for the Observatory Instrument Telemetry Analyzer object type. This object
type monitors an onboard satellite instrument. There are several variants of this object type
corresponding to different onboard observatory experiments.

106

www.manaraa.com

KNOWLEDG&BASEDSOFrWARE

• 0
Expenment One

Instrument
Telemetry Trend

Analyzer

Observatory
Instrument

Telemetry Trend
Analyzer

is-a

• 0
Expenment Two

Instrument
Telemetry Trend

Analyzer

• 0
Expertment Three

Instrument
Telemetry Trend

Analyzer

Figure 5. Generalization/specialization hierarchy from payload operations control center domain.

291

2.2.6. Feature/object dependencies. For each feature (domain requirement), this view
shows the object types required to support the feature. In domain analysis, domain re
quirements are analyzed and categorized as those that support kernel requirements (must
be supported in all target systems), optional requirements (only required in some target
systems), prerequisite requirements (depended upon by other requirements), and those that
are mutually exclusive. This view emphasizes optional features, because it is the selection
of the optional features and the object types required to support them that determine the
nature of the desired target system.

Examples of feature/feature and feature/object dependencies from the POCC domain are
shown in figure 6. Consider the feature/object dependencies for the Sending Real-Time
commands feature. Sending command loads, i.e., predetermined sequences of commands
to be executed on the satellite at predetermined times, is a kernel feature. Thus every
POCC system must support this feature. However sending real-time commands, which
are commands entered on-line by the Flight Operation Analyst, for execution as soon as
they are received by the satellite, is an option that only some POCC systems support. The
object types required to support this feature are the Real-Time Command Data Store (which
maintains a copy of the command after it has been sent), Satellite Bound Command Problem
Resolver (which resolves any inconsistencies between areal-time command and a command

Example of feature/object dependencies:
(Sending Real Time Commands Feature supported-by Real-Time_Command

Data_Store_OS optional)
(Sending Real Time Commands Feature supported-by Satellite_Bound

Command]roblem_Resolver_OS optional)
(Sending Real Time Commands Feature supported-by Satellite_Bound_Real

Time_Command]rocessor _OS optional)

Example feature/feature depeDdeDCY :
(Verifying Real Time Commands Feature requires Sending Real Time Commands Feature)

Figure 6. Example feature/object and feature/feature dependencies from payload operations control center
domain.

107

www.manaraa.com

292 GOMAAETAL.

in the regular command load), and Satellite Bound Real-Time Command Processor, (which
processes all real-time commands to be sent to the satellite). These object types are only
included in a given target POCC system (one of the members of the pace family) if the
sending real-time commands feature is needed for that system.

An example of a feature/feature dependency is the Verifying Real-Time Commands
feature, which contains the functionality for determining that real-time commands were
executed as expected on the satellite. This optional feature needs the Sending Real-Time
Commands as a prerequisite, as it is meaningless to verify real-time commands if they were
never sent to the satellite in the first place.

3. Overview of prototype knowledge-based software engineering environment

3.1. Domain modeling environments

A software engineering environment which allows the generation of target systems from
a domain model, i.e., reusable architecture for the particular application domain, is re
ferred to in this paper as a domain modeling environment. A goal of this domain modeling
environment research is to be application domain-independent. This is in contrast to gener
ator environments such as application generators and software system generators (Batory,
1989; Batory and O'Malley, 1992). These generators are usually highly domain-specific
as they have the structure and code for the application domain built into them. In ad
dition, they provide a means of adapting the code to generate a specific target system,
either by means of parameterization or a by a user program written in a domain-specific
language. The most widespread use of this technology is in application generators and
fourth generation languages, where the application domain is that of interactive database
intensive information systems (Blum, 1987). A user writes a program in the fourth gen
eration language, which is used by the application generator to generate a specific target
system.

3.2. Objectives o!prototype

The EDLC and the domain modeling concept of developing a family of systems repre
sent a radically different paradigm for software development compared to the traditional
development paradigm of developing a single system. It was therefore considered desir
able to develop a proof-of-concept prototype domain modeling environment. The pro
totype environment is called the Knowledge-Based Software Engineering Environment
(KBSEE).

The objectives of the proof-of-concept prototype environment are to:

(a) Provide tool support for representing the multiple graphical views supported by the
domain modeling method.

(b) Provide a capability for consistency checking between the multiple views.
(c) Provide a capability for mapping the multiple views to a common underlying repre

sentation, namely an object repository.

108

www.manaraa.com

KNOWLEDGE-BASED SOFfW ARE 293

(d) Provide automated support for generating target system specifications from the domain
model.

(e) Provide a domain independent environment. Thus the KBSEE should be capable of
being used with multiple domain models.

(f) Because of limited resources and the need to focus those resources on the innovative
parts of the KBSEE, use existing software tools where possible.

At the start ofthis project, these objectives were considered daunting and limited resources
were available for this purpose. It was therefore decided to constrain the proof-of-concept
experiment as follows:

(a) From domain modeling, provide tool support for the domain analysis and modeling
phase of the EDLC.

(b) From target system generation, provide tool support for the generation of the target
system specification phase. In particular, it was viewed that this phase was a good
candidate for a knowledge-based tool, as the procedures for target system generation
could be expressed as rules.

3.3. Tool support/or prototype

Because of limited resources and the desire to focus on the innovative aspects of the domain
modeling environment, commercial-off-the-shelf software was used whenever possible. We
believe that the tools discussed below represent another important aspect of reuse, and feel
that open architectures and standards are essential to fostering large-scale reuse of software.

User interface management system. An existing user interface management system is
desirable to support a windows, menu and icon based user interface. NASA's TAE User
Interface Management System was selected to provide an integrated interface to the proto
type environment (Szczur, 1990). The main menu of the environment is built using TAE,
as is the user interface for the object repository tools described in Section 4.3.

CASE tool. A survey of CASE tools indicated that there are several that support the popular
Structured Analysis and Real-Time Structured Analysis methods (Yourdon, 1989). It was
decided that the domain modeling method should use a graphical notation similar to that
used by Real-Time Structured Analysis, but with a radically different semantic interpretation
of the diagrams supported by the domain modeling method. Another key requirement was
that the CASE tool support an open system architecture, so that the information contained
in the multiple views could be extracted and processed by custom software tools developed
as part of this project. Interactive Development Environment's (IDE) Software Through
Pictures (StP) was selected, as it satisfies the above two requirements. The StP CASE tool
was used by the Domain model graphical editing tools described in Section 4.2.1.

Knowledge based expert system shell. A Knowledge-Based Requirements Elicitation Tool
was needed for automatically generating target system specifications from the domain

109

www.manaraa.com

294 GOMAAETAL.

model. Using an expert system shell would greatly assist in the development of this tool.
NASA's CLIPS expert system shell was selected for this purpose. The Knowledge-Based
Requirements Elicitation Tool (KBRET), described in Section 4.4, was developed using
CLIPS.

Object-oriented programming environment. Initially, we considered using an object
oriented database management system as the basis for the object repository. However,
for the proof-of-concept prototype, it was decided that it would be simpler and sufficient
to implement the object repository using the Eiffel object-oriented programming language
and system (Meyer, 1987), which supports a persistent object store. The object repository
tools described in Section 4.3 were all developed using the Eiffel programming environ
ment.

4. The knowledge-based software engineering environment

4.1. Introduction

The scope of the prototype Knowledge-Based Software Engineering Environment includes
two major phases: (1) Development of a domain model specification and (2) Generation
of the target system specification. The integrated underlying representation of the domain
model, as captured by the KBSEE, is referred to as the domain model specification, i.e., the
specification for the family of systems. A tailored version of the domain model specification
is referred to as a target system specification, i.e., the specification of a member of the
family.

During domain modeling (figure 7), the graphical editors supported by the Software
Through Pictures CASE tool are used to develop four of the multiple views of the domain
model, namely the Aggregation Hierarchy, the Object Communication Diagrams, the Gen
eralization/Specialization Hierarchies and the State Transition Diagrams. The information
in the multiple views is extracted, checked for consistency, and mapped first to a set of rela
tions and then to an object repository. The feature/object dependencies and feature/feature
dependencies are defined using a Feature/Object Editor. The tools involved in this phase
are described in Sections 4.2 and 4.3.

A knowledge based requirements elicitation tool (KBRET) is used to assist with the
generation of the target system specification (figure 8). KBRET conducts a dialog with
the human target system requirements engineer, presenting the user with the optional fea
tures available for selection for the target system. The user selects the desired features,
and KBRET reasons about the feature/feature dependencies to ensure that a consistent
set of features are selected. KBRET then determines the kernel, optional and variant ob
ject types to be included in this target system. This output of KBRET is used to adapt
the multiple views of the domain model to generate the multiple views of the target sys
tem specification. The tools involved in this phase are described in Sections 4.4 and
4.5.

Apart from the Domain Model Graphical Editing tools described in Section 4.2.1, the
tools described in this section were custom developed for this project.

110

www.manaraa.com

KNOWLEDGE-BASED SOFfW ARE

~:
~

Domain
Model

Relations

Figure 7. Development of domain model specification.

Do •••
Objcd

Repaoilory

Figure 8. Generation of target system specification.

Domain
Object

Repository

1Iho _.r
T '-SopecI

295

111

www.manaraa.com

296 GOMAA ET AL.

4.2. Tools for creating and integrating multiple views

In this section we discuss each custom-developed software tool.

4.2.1. Domain model graphical editing tools. These tools allows the graphical editing
of four of the five multiple views of a domain model. The views are the object type
aggregation hierarchy, the object communication diagrams, state transition diagrams, and
object type generalization/specialization hierarchies. These tools are customized versions
of the Software through Pictures (StP) CASE tool graphical editors.

The Aggregation Hierarchy (figure 2) is developed using StP's Structure Editor. Object
Communication Diagrams (figure 3) are developed using StP's data flow diagram editor.
State transition diagrams (figure 4) are developed using StP's state transition diagram edi
tor. The Generalization/Specialization Hierarchies (figure 5) are also created using the StP
structure editor; the 0 in the corner of the box is used to indicate that the children in the
hierarchy are variants of the parent object type, and hence distinguishes the Generaliza
tion/Spe~ialization Hierarchies from the Aggregation Hierarchy.

4.2.2. Domain model relation extractor tool. The information contained in the four views
of the domain model described above, as captured by StP's graphical editors, are stored by
StP in its TROLL relational data base. The Domain Model Relation Extractor (figure 7) is a
custom developed tool that extracts this information from StP's database, interprets the data
semantically according to the domain modeling method, and stores this data in a common
underlying relational representation of the mUltiple views.

As mentioned previously, the domain modeling method's semantic interpretation of the
multiple views differs from the StP interpretation. The StP underlying relational schema
was expanded by adding a new set of relations that captured the semantics of the domain
model. The Domain Model Relation Extractor (DMRE) tool uses a set of scripts written in
the TrolVUSE query language to: (I) extract the domain information from the predefined
set of relations, (2) interpret them semantically based on the domain modeling method, and
(3) store the extracted information in the newly defined Domain Model Relations.

There is one relation for the aggregation hierarchy, one relation for the generaliza
tion/specialization hierarchies, and several relations to capture the information contained
in the object communication diagrams. The Domain Model Relations are:

(1) The aggregation hierarchy is captured in the Node_part_of relation. The attributes of
this relation are the parent node name and the child node name.

(2) The generalization/specialization hierarchies are captured in the Is..a relation. The
attributes of this relation are the parent node name and the child node name.

The information in the object communication diagrams is captured in the following relations:

(1) The domain object types are captured in the Nodes relation. The attributes of this
relation are the name of the object type, the name of the diagram it appears on (each
diagram has a unique name), its unique index which is displayed on the diagram, and
its cardinality.

112

www.manaraa.com

KNOWLEDGE-BASED SOFIW ARE 297

(2) The Arcs relation defines the message interfaces shown on the object communication
diagrams. The attributes of this relation are the message name, the diagram it appears
on, and the source and sink object types.

(3) The Externals relation defines the names of the external object types that appear on
the domain context diagram. This is the highest level object communication diagram,
which defines the scope of the domain.

(4) The Arc_part_ofrelation defines the aggregate message decomposition as depicted on
the object communication diagrams. The attributes of this relation are the parent arc
label and the child arc label.

(5) The Decomposed relation defines the decomposition of aggregate object types into
their constituent object types as given by the names of the parent and child object
communication diagrams. The attributes of this relation are the parent node name, the
parent OCD diagram name, and the child OCD diagram name.

(6) The Diagrams relation defines the names of all the object communication diagrams.

As an example of the Domain Model Relations, a portion of the Node_part_of relation
from the POCC application domain is shown in figure 9. This relation has two attributes
corresponding to the parent and child nodes. For every parent-child relationship in the
aggregation hierarchy, there is a corresponding tuple in the Node_part_of relation. Thus if
a parent has several children, such as Command which has three children, there is one row
for each child. As multilevel hierarchies are supported, a child in one row can appear as a
parent in a different row.

The notation suffixes K, 0, A, S, and V refer to characteristics of the object types,
respectively, Kernel, Optional, Aggregate, Simple and Variant. An object type is either
Kernel or Optional, Aggregate or Simple, and may also be a Variant. These labels indicate
the possibly multiple roles an object type may have in the domain model.

1 Block_Processtng_KA_!
1 Block_Processing_KA_!
I Block_Processins..KIU
1 Block_Process i ns_KA_ !
1 Block_Processing_KA_!
1 Block_Processins_KA_!
1 Block_Processing_KA_!
1 Block_Processing_KA_!
1 COI1IlOaMd_Load_Processor _OA_!
CO/II~nd_Load_Processor _OA_ !

1 COllKlland_LoacCProcessor _oo_!
1
1 COllu.and_OO_1
1 ColUland_OA_!
1 COOIllland_OO_!
1
1 Cont i nuous_ Tel ellletrlj_Process inS_KA_ !

Figure 9. Node_parLof relation from POCC domain.

Block_Hanaser_KS_!
Internal_SilllUlator _05_1
NASCOH_Blocks_Histo~05_!
NASCOH_Lossins..OS_ !
NASCll·LRepI aoJ_OS_ !
RlJPS_InterfaceJ<VS_ !
Silllulator Jiles_OS_!
TAC_Interface_KYS_ !
COIIIIIIand_Load_Data_Store_OS_! 1
Earth_BouncCCOIIIIIIarlCCLoad_ Ver i fi er _OS 1
_! 1
Sate II i te_BouncCCoMand_Load_Process 1
or_OS_' I
COIIIIIIand_Load_Processor _00_' I
Real_Tillle_Colllllland_Processor _00_' I
Satellite_Bound_ColUland_Proble~_Resol
lver_OS_! I
Atti tude_I10_KYS_! I

113

www.manaraa.com

298 GOMAAET AL.

4.2.3. Domain model consistency checking tool. The graphical views represented by
the OCDs, the AH, the GSHs, and the STDs, each focus on one aspect of the domain
being modeled. Although StP provides consistency checking within one particular view,
additional consistency checking is required among the multiple views.

The Domain Model Consistency Checker (DMCC) (figure 7) uses a set of scripts written
in the TrolVUSE query language that check the underlying relations for inconsistencies
based on rules described by the domain modeling method outlined in Section 2.2. The rules
that are checked are the following:

(1) There should be a one-to-one correspondence between the object types in the ith level
OCD and the object types in the corresponding level in the AH.

(2) The root node in each GSH should correspond to a leaf node in the AH. This is due to
the fact that each GSH serves as the specialization of a leaf object type in the AH.

(3) For each active leaf object type in the OCDs, there must exist a state transition diagram
that captures the internal behavior of the object type. Each state transition diagram, on
the other hand, must have a corresponding active leaf object type in the OCDs.

(4) The events in each state transition diagram (STD) should correspond to the incoming
messages of the object type in the OCD that the STD is describing. The actions in
each STD, on the other hand, should correspond to the outgoing messages of the same
object type in the OCD.

The domain modeler runs the DMCC after the multiple views have been developed. DMCC
displays any inconsistencies that the domain modeler must then correct before proceeding
to the generation of the object repository.

4.3. Object repository

The object repository provides an integrated object-oriented specification of each object
type in the multiple views of the domain model. This repository is a single composite
object that is composed of other objects representing domain object types, features, and
the relationships among them which serve to define a domain model. This section gives a
brief description of the object repository. A more detailed description is given in (Bosch,
Gomaa, and Kerschberg, 1995).

4.3.1. Domain object repository generator. The Domain Object Repository Generator
tool (figure 7) takes the information captured in the relational representation and creates
corresponding objects according to the object repository's schema. For example, if the
domain analyst had created eight object communication diagrams using StP, the Domain
Object Repository Generator tool would create eight instances of class OCD, the class defin
ing object communication diagrams. Similarly, this tool would create objects representing
the aggregation hierarchy, generalization/specialization hierarchies, and state transition di
agrams, as well as the domain object types, external object types, and messages which are
represented in these diagrams.

114

www.manaraa.com

KNOWLEDGE-BASED SOFTWARE 299

4.3.2. Feature/object editor. After the object repository representing a domain model
has been created, the domain analyst can use the feature/object editor (figure 7) to define
the optional features by: (1) giving each feature a unique name, (2) entering an informal
annotation for each feature, (3) specifying domain object types supporting the feature being
defined, and (4) specifying other prerequisite features required by the feature being defined.
In addition to defining new features, the domain analyst can use this tool to browse features
previously defined for a given domain model, delete features from the domain model, or
modify the definition of features in a domain model. The Feature/Object Editor can also
be used to establish relationships among sets of features.

4.3.3. Domain-dependent knowledge base extractor. The Domain-Dependent knowl
edge base Extractor tool extracts the information contained in the object repository for
a domain model and maps it to the domain-dependent knowledge base, which contains a
knowledge-based representation of the information contained in the multiple views. This
knowledge base is stored as facts in the CLIPS language. Facts are created for each ob
ject type, feature, and feature annotation. Similarly, facts are created corresponding to
feature/feature dependencies, feature/object dependencies, as well as the aggregation and
generalization/specialization hierarchies. An example of a domain-dependent knowledge
base for the POCC application domain is shown in figure 10. This figures shows a selection

Object
(Object: 0 Payload_Operations_Control_Center_Domain_KA kernel aggregate aghJoot)
(Object: I Telemetry kernel aggregate)
(Object: 2 Telemetry Pre-Processor kernel)

(Object: 65 POCC Mode Selector With Simulation variant)

Features
(Feature: I Data Collection of Simulated Telemetry)

(Feature: 7 Verifying Real Time Commands)

FeaturelFeature Dependencies
(Verifying Real Time Commands Feature 7 requires Sending Real Time Commands Feature 4)

Feature/Object Dependencies
(Data Collection of Simulated Telemetry Feature 5 supported.by 65 POCC Mode Selector With

Simulation variant)
(Sending Real Time Commands Feature 4 supported-by 38 Real-Time Command Data

Store optional)

(Verifying Real Time Commands Feature 7 supported-by 26 Earth Bound Real-Time Command
Verifier optional)

Aggregation Hieruchy
(is-part-of 0 Payload Operations Control Center Domain I Telemetry)
(is-part-of 1 Telemetry 3 Spacecraft Telemetry Processor)
(is-part-of 3 Spacecraft Telemetry Processor 5 SC Engineering Telemetry Trend Analyzer)

Generalization/Specialization Hierarchies
(is-a \0 Observatory Instrument Telemetry Analog Limits Checker 53 Experiment One

Instrument Telemetry Analog Limits Checker)
(is-a \0 Observatory Instrument Telemetry Analog Limits Checker 55 Experiment Two

Instrument Telemetry Analog Limits Checker)

Figure 10. Domain-dependent knowledge base for the POCe.

115

www.manaraa.com

300 GOMAAETAL.

of the domain object types, features, feature/feature dependencies, feature/object dependen
cies, and parts of the aggregation hierarchy and generalization/specialization hierarchies.

The characteristics of each object type in the domain model are also given. Thus object
type Payload Operations Control Center Domain is the root of the Aggregation Hierarchy,
which is always Kernel and Aggregate. Features are supported by variant or optional object
types. A feature, such as Verifying Real Time Commands, may require another feature as
a prerequisite.

4.4. Knowledge-based requirements elicitation tool

4.4.1. Overview. A target system specification is derived by tailoring the domain model
according to the features desired in the target system. During the generation of the target
system specification, the feature/object dependencies must be enforced in order to ensure a
consistent specification. A knowledge-based system called the Knowledge-Based Require
ments Elicitation Tool (KBRET) has been developed to automate the process of generating
the specifications for the target systems. This tool has been implemented in NASA's CLIPS
expert system shell (CLIPS, 1989).

The major compments of KBRET are (1) the domain-dependent knowledge base, (2)
the domain-independent knowledge base, and (3) the user interface manager. The domain
dependent knowledge base is derived from the object repository through the KBRET-Object
Repository Interface, and contains domain-specific information which characterizes the
multiple views, object specifications, features and dependencies of a particular domain
model for which a target system is desired.

The domain-independent knowledge base contains the procedural and control knowledge
required to generate target system specifications from a domain model. This separation be
tween the domain-independent and domain-dependent knowledge is essential for making
the environment domain independent. Thus, the domain-dependent knowledge base can be
derived from different domain models regardless of their application domain. The knowl
edge bases consist of knowledge modules (KMs). Each domain-dependent KM consists of
a set of related facts derived from the object repository, while each domain-independent KM
consists of rules to support its functionality. The inference engine is the underlying forward
chaining production system provided by CLIPS. The KMs are invoked and executed by the
inference engine, based on the rules in the domain-independent knowledge base.

KBRETaccomplishes the task of target system specification generation in several phases:
Browsing, Target System Requirements Elicitation, Dependency Checking, and Target
System Specification Generation. The various components of KBRET are schematically
shown in figure 11.

The User Interface Manager is responsible for interacting with the target system engineer
to elicit the requirements for the target system. It addresses such issues as how, and in what
sequence the target system engineer should be prompted for various features, as well as the
invocation and control of the various KMs of KBRET.

4.4.2. Domain-dependent knowledge base. As the name suggests, the domain-dependent
knowledge base contains specific information about a particular application domain

116

www.manaraa.com

KNOWLEDGE-BASED SOFfWARE 301

Target System ~
Requirements

Engineer .,.

KBRET J.
User InlCfface Manager 1

Domain InclopcncIent Knowledge Base I

[§J~'-I-'I Tatge!
B SelecrionlDeletion Checker System

rowser Handler Generator

Domain Dependent Knowledge Bue 1
Feature and Objecl Featur<JObjecl ~ Type Definitions Dependency View Views

t

r
Target

1 System
Specification

1
I KBRET-Object Repository InlCffoce I

1
i'---.. ..-/

Objecl
Repository

Figure 11. Knowledge-based requirements elicitation tool.

(figure 10). This knowledge base is composed of several modules, namely, "Feature and
Object Types", "Feature/Object Dependencies", and "Multiple Views". They are used by
the domain-independent knowledge base of KBRET in eliciting the requirements and gen
erating the target system specification. The domain-dependent knowledge base is derived
from the domain model specification, stored persistently in the object repository.

The Features and Object Types KM contains a list of all the object types and features
specified in the domain model. For each object type, its identifier, name, and properties are
stored in this KM. The properties of object types are: kernel, optional, variant, aggregate,
root of aggregation hierarchy, and root of generalization/specialization hierarchy. Simi
larly, for each feature, its identifier and name are stored. The various relationships and
dependencies among features and between features and object types are captured in the

117

www.manaraa.com

302 GOMAAET AL.

Feature/Object Dependencies KM. The Multiple Views KM contains the different views
created using the domain modeling method, in particular, the aggregation hierarchy and the
generalization/specialization hierarchies. These hierarchies are accessed and utilized by
the Target System Generator KM when the target system is being assembled.

4.4.3. Domain-independent knowledge base. The domain-independent knowledge base
provides procedural and control knowledge for the various functions supported by KBRET.

Before specifying the requirements for the target system, the target system engineer may
wish to browse portions of the domain model to gain greater understanding of the application
domain under consideration. The Domain Browser KM provides this facility. It contains
rules for initiating and terminating the browsing session and also provides access to the
appropriate domain-dependent KMs to be accessed in order to browse those parts of the
domain model which the target system engineer wishes to explore.

The Feature & Object Selection/Deletion Handler KM keeps track ofthe selection or dele
tion of features, and associated object types. This KM incorporates rules for selecting and
deleting features and also rules for checking feature/feature and feature/object dependencies.

The Dependency Checker KM works cooperatively with the Feature & Object Select
ionlDeletion Handler KM. Whenever a feature is selected or deleted, the Dependency
Checker enforces the feature/feature and feature/object dependencies, which are obtained
from the Feature/Object Dependencies KM. When a feature with some prerequisite features
is selected, the Dependency Checker ensures that those prerequisite features are included
in the target system.

In order to support the complex interrelationships among features and objects, constraint
management techniques (Shepherd and Kerschberg, 1986) are used to reason about these
relationships, and ensure consistency through rule inference and triggers to enact constraint
propagation (Kersch berg, 1990; Yoon and Kerschberg, 1995).

For example, in the POCC application domain (figure 10), the "Verifying Real Time
Commands" feature requires the "Sending Real Time Commands" feature. When selecting
the Verifying Real Time Commands feature, if the "Sending Real Time Commands" feature
is not selected, it will be selected automatically for the target system. Similarly, before
deleting a feature from the target system, dependency checking is performed to ensure that
it is not required by any other target system feature. For example, if both "Sending Real
Time Commands" and "Verifying Real Time Commands" features are currently selected,
the "Sending Real Time Commands" feature may not be deleted as long as the "Verifying
Real Time Commands" feature is selected for the target system.

Once feature selection for the target system has been completed, the Target System
Generator KM begins the process of assembling the target system. The domain kernel
object types are automatically included in the target system. Depending upon the features
selected for the target system, the corresponding variant and optional object types are
included according to the feature/object dependencies.

When the target system assembly is complete, KBRET produces two relations: (I) the
object types that have been included in the target system and (2) the specializations that
have been included in the target system.

The generated target system specification is stored in the object repository for future
reference and reuse. The target system specification can be reused because we store not

118

www.manaraa.com

KNOWLEDGE-BASED SOFTWARE 303

only the specification, but also the features and the reasoning "state". KBRET can be used
to make "incremental changes" to an existing target system by de-selecting certain features
and selecting other features. A new target system specification can then be generated.

4.5. Target system specification generator tool

The graphical views of a target system can be generated automatically from those of the
domain model by tailoring the domain model views based on KBRET's output. The spec
ification of a target system is defined in terms of the object types that are to be included in
the target system. Using this information, the Target System Specification Generator tool
performs the following tasks:

(1) Derives the set of object types that are not included in the target system and hence must
be removed from the domain model.

(2) Generates the graphical views for the target system using the domain model views and
the list of the object types to be deleted. The two relations that KBRET generates
are used in tailoring the StP "picture files" of the domain model to create the target
system picture files to be displayed by StP. (StP creates a picture file for each diagram
describing the pictorial layout of the diagram).

(3) Modifies the object type names by appending the word "Variant" to the name of those
object types for which a specialization, has been selected and the word "Variants" to
those object types for which more than one variant object type has been selected.

The target system engineer may then view the multiple views of the target system using the
StP graphical editors.

5. Evaluation of KBSEE

The KBSEE is a successful proof-of-concept prototype. The KBSEE demonstrates the fea
sibility of domain-independent domain modeling methods and environments for developing
domain models, which capture the common aspects and variations of a family of systems,
from which target system specifications can be generated.

Specifically, each of the objectives listed in Section 3.2 was achieved as follows:

(a) Provide tool support for representing the multiple graphical views supported by the
domain modeling method.

This was achieved using the StP graphical editors to support the multiple views. The
editors were used to capture the domain model; each view was then interpreted semantically
by our tools according to the domain modeling method.

(b) Provide a capability for consistency checking between the multiple views.

We developed a multiple view consistency checking tool for this purpose, which reported
any inconsistencies among the views to the user.

119

www.manaraa.com

304 GOMAAETAL.

(c) Provide a capability for mapping the multiple views to a common underlying repre
sentation, namely an object repository.

This was achieved by first using the open architecture provided by StP to extract the
information in the multiple views, mapping these views to an integrated set of relations that
supported the multiple views, and then mapping these relations to an object repository. The
latter two steps were achieved using tools we developed for the KBSEE.

(d) Provide automated support for generating target system specifications from the domain
model.

This was achieved by developing the knowledge based requirements elicitation tool
(KBRET) for this purpose. KBRET interacts with the target system requirements engineer
to generate a target system specification from the domain model.

(e) Provide a domair: independent environment. Thus the KBSEE should be capable of
being used with mUltiple domain models.

Several domain models have been developed using the KBSEE. In addition to NASA's
Payload Operations Control Center domain described in this paper, other application do
mains have been modeled including NASA's Transportable Payload Operations Control
Center (TPOCC) domain, a manufacturing domain (Gomaa, 1995a) and a banking federa
tion domain (Gomaa, 1994).

This demonstrates that the KBSEE environment is indeed domain independent. Domain
independence is achieved by treating all domain dependent information as data and facts to
be manipulated by the domain-independent tools.

(f) Use existing software tools where possible.

As an experiment in constructing an environment by building on top of several tools
and integrating these tools, the KBSEE was highly successful. It succeeded in integrating
several tools including the StP CASE tool, the Eiffel programming environment, the TAE
user interface management system, and the CLIPS expert system shell.

As shown above, the KBSEE is a successful proof-of-concept prototype which met
all its objectives. However, because KBSEE was built as a proof-of-concept prototype,
the emphasis was on demonstrating that the domain modeling concept was viable and
not on providing an easy to use operational environment. Thus, from the point of view
of forming the basis of an operational system for use by large· numbers of users, KB
SEE has some limitations. These include inconsistencies in the user interface, as the
StP editors have a different user interface than tools using TAE, which in turn are differ
ent from KBRET's user interface. Furthermore, some of the tools are intolerant to user
errors. None of these limitations are difficult to address from a development perspec
tive.

120

www.manaraa.com

KNOWLEDGE-BASED SOFfW ARE 305

6. Current status

We are currently investigating extending the KBSEE to support the design and implementa
tion phases of the EDLC model as well as scaleup issues. Current research is investigating
a key aspect of defining the reuable architecture; defining the interconnection among the
kernel, optional, and variant object types in the architecture using a module interconnection
language. Object types and their interconnections are defined in object interconnection
fragments, corresponding to the features that depend on them.

For each feature, a fragment is created, in which the optional and variant object types
needed to support it are defined as well as the interconnection between these object types.
In addition, interconnections are defined between these object types and any kernel object
types they use, as well as any optional or variant object types defined in prerequisite features
of this feature.

A given target system is defined in terms of the object interconnection fragments it needs.
The target system always contains the kernel fragment. In addition, it contains the optional
fragments corresponding to the optional features selected for that target system, subject to
the appropriate feature/feature constraints.

We are currently interfacing the domain modeling environment to the Regis distributed
configuration environment (Magee et aI., 1994). Regis' flexible and comprehensive sup
port for constructing distributed systems makes it a good vehicle for configuring distributed
applications developed using the domain modeling method described in this paper. Par
ticularly useful is the capability for configuring distributed applications from predefined
component types.

A domain model is defined in terms of Regis component types stored in a reuse library.
All component types have their interfaces defined in terms of entry and exit ports. Inter
connection between components in each component interconnection fragment are defined
using Darwin, the Regis module interconnection language (Kramer et aI., 1992).

During the generation of the target system, the domain model is tailored using the KBRET
tool, based on the optional features selected by the user. Based on these features, the
corresponding object interconnection fragments are selected and integrated to create a
target system configuration. Assuming that the component types have been developed, the
target system configuration can then be instantiated and executed. An early prototype of
the tools interfacing the KBSEE with Regis is currently being experimented with in our lab.

7. Conclusions

This paper has described a domain modeling method and prototype Knowledge Based
Software Engineering Environment, which has been developed to demonstrate the concepts
of reusable software requirements and architectures. The application domain-independent
prototype environment supports the development of domain models and the generation of
target system specifications. The environment consists of an integrated set of commercial
off-the-shelf software tools and custom-developed software tools.

The KBSEE has been used for modeling several different application domains. In addi
tion to NASA's Payload Operations Control Center and Transportable Payload Operations

121

www.manaraa.com

306 GOMAAETAL.

Control Center domains, two other application domains, a factory automation domain and
a federated banking domain have been modeled. This demonstrates the viability of the do
main modeling approach for developing reusable software architectures from which target
systems can be generated. It also demonstrates that the environment is indeed domain
independent.

The wide ranging nature of the domain modeling method and the KBSEE was shown
when the environment was used to model a software process modeling domain. The Spiral
Model, developed by B. Boehm (Boehm, 1988; Boehm and Belz, 1989), encompasses other
life cycle models such as the Waterfall Model, the Incremental Development model, and
the Evolutionary Prototyping Model. The key characteristics of a given project, referred
to as process drivers, are determined during risk analysis. The process drivers are used to
tailor the spiral model to generate a project specific process model. A domain model was
developed of the spiral model and then the KBSEE was used as a process model generator.
The activities of the spiral model were modeled using objects in the domain model and the
process drivers were modeled using features (Gomaa and Kerschberg, 1995b).

8. Acknowledgments

The authors gratefully acknowledge the assistance of S. Bailin, R. Dutilly, J.M. Moore,
and W. Truszkowski in providing us with domain-specific information on the POCC. The
authors also thank the anonymous referees for their comments on an earlier draft of this
paper. The domain modeling research and development of the Knowledge-Based Software
Engineering Environment was sponsored primarily by NASA Goddard Space Flight Center
with additional support from the Virginia Center of Innovative Technology. Portions of the
work were sponsored by an ARPA grant, administered by the Office of Naval Research
under grant number NOOO14-92-J-4038. The Software Through Pictures CASE tool was
donated to GMU by Interactive Development Environments, Inc.

References

Batory. D. 1989. The genesis database system compiler: A result of domain modeling. In Proc. Workshop on
Domain Modelingfor Software Engineering, OOPSLA'89, New Orleans.

Batory, D. and O'Malley. S. 1992. The design and implementation of hierarchical software with reusable compo-
nents. ACM Transactions on Software Engineering Methodology, 1(4):355-398.

Biggerstaff, T. and Richter, C. 1987. Reusability framework, assessment, and directions. IEEE Software.
Blum. B. 1987. The tedium development environment for information systems. IEEE Software.
Boehm, B. 1988. A spiral model of software development and enhancement. IEEE Computer.
Boehm, B. and Belz, F. 1989. Experiences with the spiral model as a process model generator. In Proc. 5th

International Software Process Workshop.
Bosch. C., Gomaa, H., and Kerschberg, L. 1995. Design and construction of a software engineering environment:

Experiences with Eiffel. IEEE Readings in Object-Oriented Systems and Applications, IEEE Computer Society

Press.
Gomaa. H., Fairley, R., and Kerschberg, L. 1989. Towards an evolutionary domain life cycle model. In Proc.

Workshop on Domain Modeling for Software Engineering, OOPSLA, New Orleans.

122

www.manaraa.com

KNOWLEDGE-BASED SOFTWARE 307

Gomaa, H. and Kerschberg, L. 1991. An evolutionary domain life cycle model for domain modeling and target
system generation. In Proc. Workshop on Domain Modeling for Software Engineering, International Conference
on Software Engineering, Austin.

Gomaa, H. 1992a. An object-oriented domain analysis and modeling method for software reuse. In Proc. Hawaii

International Conference on System Sciences, Hawaii.
Gomaa, H., Kerschberg, L., and Sugumaran, V. 1992b. A knowledge-based approach for generating target system

specifications from a domain model. In Proc. IFIP World Computer Congress, Madrid, Spain.
Gomaa, H., Kerschberg, L., and Sugumaran, V. 1992c. Knowledge-based approach to domain modeling: Appli

cation to NASA's payload operations control centers. Telematics and Informatics, 9(3/4):281-296.
Gomaa, H. 1993a. A reuse-oriented approach for structuring and configuring distributed applications. Software

Engineering Journal, pp. 61-71.
Gomaa, H. 1993b. Software Design Methodsfor Concurrent and Real-TIme Systems. Addison Wesley.
Gomaa, H. 1994. Configuration of distributed heterogeneous information systems. In Proc. Second International

Workshop on Configurable Distributed Systems.
Gomaa, H. 1995a. Reusable software requirements and architectures for families of systems. Journal of Systems

and Software.
Gomaa, H. and Kerschberg, L. 1995b. Domain modeling for software reuse and evolution. In Proc. IEEE Computer

Assisted Software Engineering Workshop (CASE 95), Toronto.
Jackson, M. 1983. System Development. Prentice Hall.
Kang, K.C. 1990. Feature-oriented domain analysis. Technical Report No. CMU/SEI-90-TR-2I, Software Engi

neering Institute.
Kramer, J., Magee, 1., Sloman, M., and Dulay, N. 1992. Configuring object-based distributed programs in REX.

Software Engineering Journal.
Lubars, M.D. 1989. Domain analysis for multiple target systems. In Proc. Workshop on Domain Modeling for

Software Engineering, OOPSLA'89, New Orleans.
Lyndon B. 1989. Artificial intelligence section. CUPS Reference Manual. Johnson Space Center.
Magee, J., Dulay, N., and Kramer, 1. 1994. A constructive development environment for parallel and distributed

programs. Second International Workshop on Configurable Distributed Systems, Pittsburgh, PA.
Meyer, B. 1987. Reusability: The case for object-oriented design. IEEE Software.
Mylopoulos, 1., Borgida, A., Jarke, M., and Koubarikis, M. 1990. Telos: Representing knowledge about informa

tion systems. ACM Transactions on Information Systems, 8(4):325-362.
Parnas, D. 1979. Designing software for ease of extension and contraction. IEEE Transactions on Software

Engineering.
Prieto-Diaz, R. and Freeman, P. 1987. Classifying software for reusability. IEEE Software.
Pyster, A. 1990. The synthesis process for software development. In System and Software Requirements Engineer

ing. R. Thayer and M. Dorfman (Eds.), IEEE Computer Society Press.
Rumbaugh. J. et al. 1991. Object -oriented modeling and design, Prentice Hall.
Shepherd. A. and Kerschberg, L. 1986. Constraint management in expert database systems. Expert Database

Systems: Proceedings from the First International Workshop. L. Kerschberg (Ed.), The Benjamin/Cummings
Publishing Co., Menlo Park, CA.

Shlaer, S. and Mellor, S. 1988. Object Oriented Systems Analysis. Prentice Hall.
Szczur, M.R. 1990. A user interface development tool for space science systems. AIAAINASA Symposium on Space

Information Systems.
Wegner, P. 1990. Concepts and paradigms of object-oriented programming. OOPS Messenger (ACM SIGPLAN),

1(1).

Yoon. PH, J., and Kerschberg, L. 1992. A framework for constraint management in object-oriented databases.
Paper presented at the International Conference on Information and Knowledge Management, Baltimore, MD.

Yourdon, E. 1989. Modern Structured Analysis. Prentice Hall.

123

www.manaraa.com

Automated Software Engineering 3,309-345 (1996)
© 1996 Kluwer Academic Publishers. Manufactured in The Netherlands.

Enveloping Sophisticated Tools
into Process-Centered Environments*

GIUSEPPE VALETIO
GAn. E. KAISER
Rank Xerox Research Centre, 6 Chemin de Maupertuis. 38240 Meylan, France.

kaiser@cs.columbia.edu

Columbia University. Department of Computer Science. New York. NY 10027. United States

Abstract. We present a tool integration strategy based on enveloping pre-existing tools without source code
modifications or recompilation, and without assuming an extension language, application programming interface,
or any other special capabilities on the part of the tool. This Black Box enveloping (or wrapping) idea has existed
for a long time, but was previously restricted to relatively simple tools. We describe the design and implementation
of, and experimentation with, a new Black Box enveloping facility intended for sophisticated tools-with particular
concern for the emerging class of groupware applications.

Keywords: tool integration, workflow, computer-supported cooperative work, computer-aided software engi
neering

1. Introduction

Process-centered environments (PCEs) and other task-oriented frameworks (see, e.g., the
NISTIECMA reference model (Reference, 1993)) usually support dialogues between ex
ternal tools and the environment, which serves as a mechanism for integrating the tools
according to their roles in the workflow. We identify three categories of integration meth
ods, with respect to their approach to adapting the tools to the environment:

• White Box, where a custom tool is developed as part of a particular environment or a pre
existing tool's source code is modified to match a framework's interface. Custom tools
may be prohibitively expensive to develop. Changes to pre-existing tools can often be im
plemented in a straightforward, repetitive manner, but nevertheless the source code must
be available-perhaps an insurmountable difficulty when integrating off-the-shelf tools
from independent vendors. The White Box approach is followed by several commercial
message buses, most based on either the Field broadcast message server (Reiss, 1990) or

'This work was conducted while Mr. Valetto was a graduate student at Columbia University. Prof. Kaiser was
supported in part by Advanced Research Project Agency Order B 128 monitored by Air Force Rome Lab F30602-
94-C-0197, in part by National Science Foundation CCR-9301092, in part by the New York State Science and
Technology Foundation Center for Advanced Technology in High Performance Computing and Communications
in Healthcare 94013, and in part by grants from AT&T Foundation, Bull HN Information Systems and IBM Canada
Ltd. The views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the US or NYS governments, ARPA, Air Force,
NSF, NYSSTF, AT&T, Bull. IBM or Xerox.

www.manaraa.com

310 ENVELOPING SOPHISTICATED IDOLS

the Poly lith software bus (Purtilo, 1994). PCTE (Thomas, 1989) and similar framework
standards probably require more effort in tool adaptation, or a priori adherence to the
standard by vendors, but enable a higher scale of integration. The CORBA interoperabil
ity standard (Nicol et aI., 1993) is not specifically directed to environment frameworks,
and seems best suited to tools explicitly organized as servers-which relatively few are
at present.

• Grey Box, where the source code is not modified but the tool provides its own extension
language or application programming interface (API) in which functions can be written
to interact with the environment. Relatively few tools, aside from database manage
ment systems, provide such convenience (although see (Notkin and Griswold, 1988».
Dynamic linking coupled with replacement of standard· libraries (e.g., for I/O) works
for some environments, e.g., Provence (Krishnamurthy and Barghouti, 1993), concerned
with monitoring simple events such as file system accesses, but it seems unlikely in the
general case that arbitrary tools would happen to fit the protocols of a task-oriented frame
work. In particular, a PCE requires that task prerequisites be fulfilled prior to performing
the task, so mechanisms to detect and/or notify that a task has already been completed
are inadequate (Popovich, 1992).

• Black Box, when only binary executables are available and there is no extension language
or API. In this case, the environment must provide a protocol whereby envelopes extract
objects and/or files from the environment's data repository, present this data to their
"wrapped" tools in the appropriate format, and provide the reverse mapping for updated
data and tool return values). Envelopes may also be used in conjunction with Grey and
White Box methods, but are mandatory for Black Box integration.

Our primary goal in this paper is to augment enveloping concepts and technology to
apply to a much wider array of tools. We concentrate on the Black Box model, since it is
often the only choice (particularly for legacy tools) as well as the most challenging.

Typical Black Box enveloping technology expects the tool integrator to write a script
or program that handles the details of interfacing between the tool and the environment
framework, often both to respect the environment's notion of task and to access its data
repository, as well as the actual invocation of the tool with an appropriate command line
and collection of any outputs and return values. In the case of a PCE, the process definition
determines the workflow within which such a script or program may be executed. For
example, the task's prerequisites may need to be satisfied in advance and its obligations
fulfilled afterwards. The state of the on-going process execution usually sets the context
for providing parameters to the tool and determines what should be done with its results.

This approach works well for tools, such as the standard UNIX toolset, that accept all
their arguments from the command line at invocation, read and write some files (whose
file system pathnames are given on the command line), and return a simple status code.
Notice this does not preclude interactive tools-even graphical user interface tools such as
project schedulers and drawing programs-since the tool's own user interface appears on
the user's display device when the envelope executes the tool. The user may then enter text
or click menu items as desired; however, the granularity of access to objects/files from the
environment's data repository is the entire tool invocation. In other words, the nature of
current Black Box enveloping technology requires that the complete set of arguments from

126

www.manaraa.com

VALETIO AND KAISER 311

the repository is supplied to the tool at its invocation and that any results to be returned to
the repository are gathered only when the tool terminates, so that the tool execution-what
we call here an activity-is encapsulated within an individual task.

There are numerous tools whose natural and/or convenient use doesn't fit this descrip
tion, but may be highly desirable to integrate into PCEs, including at least the following
categories. Note these classes are not disjoint.

• Tools intended to support incremental request of parameters and/or return of (partial)
results in the middle of their execution, such as multi-buffer text editors and interactive
debuggers. Although such tools by definition allow submission of an arbitrary sequence of
the user's choice of commands during their execution, when run in a stand-alone fashion,
current enveloping technology does not permit the sequence of commands to be guided,
automated or enforced by a task-oriented environment, and often even precludes retrieval
of their parameters from the environment's data repository (e.g., if the process engine
controls all access to the repository).

• Interpretive tools that maintain a complex in-memory state reflecting progress through a
series of operations: Lisp applications, such as "Knowledge-Based Software Assistant"
(KBSA) systems (Chase and Reubenstein, 1992), are classic examples. Such tools may
require severe start-up overhead and command substantial system resources (thus we
refer to them as "heavy-weight"). We are particularly concerned with permitting different
users to submit activities to the same tool execution instance, even when that tool was not
designed to support multiple users. One of our goals is to extend a variety of single-user
tools to (modest) multi-user operation.

• Multi-User tools, such as conventional database management systems that guarantee
atomicity and serializability of separately transmitted but concurrently executing trans
actions. An important subclass is Collaborative tools (often referred to as computer
supported cooperative work-CSCW-or groupware), which abhor the conventional
isolation model and directly support multiple users interacting with each other, such as
WYSIWIS (what-you-see-is-what-I-see), IBIS decision support, Fagan-style document
inspection, desktop video conferencing, etc. (see (Kaplan, 1993; Transcending, 1994)
for more examples).

We introduce a Multi- Tool Protocol (MTP), where Multi refers to submission of multiple
activities to the same executing tool instance and enabling of multiple users to interact with
that same tool instance. Tool instances may operate for an arbitrary period of time, far
beyond the length of an individual activity on behalf of an individual user; thus we refer
to the executing tool instance as "persistent" with respect to the duration of the activities
submitted under the MTP protocol. MTP also addresses multiple platforms: submitting
tool invocations to machines other than were the user is logged in, e.g., when operating
over a heterogeneous collection of workstations and server computers but executables are
available for only a particular machine architecture or even only for a specific host; and
multiple tool instances: managing a set of executing instances of a tool, e.g., when licensing
limits the number of instances that can operate at the same time (common with commercial
server licenses). MTP, as currently defined, treats tools in a Black Box manner. MTP has
been implemented as part of the Oz process-centered environment.

127

www.manaraa.com

312 ENVELOPING SOPHISTICATED mOLS

Section 2 supplies brief background information on Oz. Section 3 introduces a tool
modeling notation for specifying the category and special requirements of the tool; this
notation extends Oz's previous facility, but could readily be adapted to other PCEs with
some notion of tool declaration. Then we present our main work in Section 4, covering the
general ideas, persistent tool sessions for four different categories of tools, an extension of
the Oz client/server architecture for managing MTP tools (intended to be adaptable to other
client/server or peer-to-peer architectures), the protocol for interaction between a process
or task management engine and executing tool instances, and finally the structure of the tool
wrappers themselves (we will use the terms "envelopes" and "wrappers" interchangeably
throughout the paper). Then Section 5 describes four tool integration experiments, one for
each of our categories. We discuss related work in Section 6. The paper concludes by
summarizing our contributions and outlining future work.

2. Oz background

Oz (Ben-Shaul and Kaiser, 1994) is a process-centered environment framework. It repre
sents both product (project artifacts) and process (workflow status) data using a home-grown
object-oriented database management component, with a separate objectbase for each in
stantiated process. An object may contain zero or more file attributes, each typed as either
text (ASCII) or binary. The value of a file attribute within an objectbase is a file system
pathname into a "hidden" file system specific to that objectbase, not intended to be accessed
except through Oz. Non-file attributes include the usual primitive values (strings, integers,
etc.), containment of child objects, and references to arbitrary objects elsewhere in the same
objectbase.

Oz's Shell Envelope Language (SEL) (Gisi and Kaiser, 1991) is typical of current Black
Box enveloping facilities, which typically involve some scripting language2 • The process
engineer (or environment builder) writes what are essentially UNIX sh, csh or ksh scripts,
using added constructs that a translator expands into regular shell commands to handle
the details of interfacing between the tool and the environment framework. An SEL en
velope is associated with each task activity. After parameters have been bound and other
preliminaries completed, Oz's process execution service directs that the named envelope
be invoked on the arguments specified by the encapsulating task, including literals and/or
object attributes. When the envelope terminates, it returns a status code and (optionally)
result values to the process engine, at which point the pending task assigns the result val
ues to objectbase attributes and performs various operations based on the envelope's status
(typically indicating success versus failure).

The mechanisms described above are implemented within a client/server architecture, one
server per instantiated process, as shown in figure I. Tool envelopes are forked by clients.
The server sends envelope names and arguments to the client responsible for that activity,
and then handles other clients in a first-come-first-served manner until the tool completes
and the results returned by the client arrive at the front of the server's request queue.

The figure shows the main components of an Oz server: Inter-Process Communication
(IPC) with its clients, Object Management System (OMS), Software Process Manager (PM),
Transaction Manager (TM), and the "glue" that holds them together as well as performing

128

www.manaraa.com

VALETIO AND KAISER 313

client
client

XView
Motif

IPC
Control

server
Figure J. Original Oz architecture.

multi-client scheduling (labelled Control). The clients have limited knowledge of object
management (om) and process management (pm), and of course also include an interprocess
communication component (ipc); the activity manager (am) is responsible for managing
tool invocations. XView and Motif graphical user interfaces are supported, as well as a
tty command line interface (not shown in figure). The various components are drawn as
"jigsaw pieces" to denote numerous connections among components as opposed to, say, a
purely layered architecture. See (Ben-Shaul et aI., 1993; Ben-Shaul and Kaiser, 1995) for
additional details.

3. Tool modeling

Assuming both SEL-like enveloping and a new MTP protocol are available, the process or
other task -oriented execution service needs to specify which tools require which protocol. In

129

www.manaraa.com

314 ENVELOPING SOPHISTICATED TOOLS

<tool-name> .. superclass TOOL;

[protocol (MTP, SEL);

path <string>

host <string>

archi tecture: (sun4, ...);

instances <integer>;

multi-flag (UNLQUEUE, MULTLQUEUE,

UNLNO_QUEUE,

MULTLNO_QUEUE) ;

<activity-name> : string =

"<envelope-name> <parameters locks>";

<activity-name> : string =

"<envelope-name> <parameters locks>";

end

Figure 2. Modified tool definition notation.

principle, every tool could be invoked via the new MTP protocol, but we retained SEL for Oz
(or the equivalent facility for some other system) as the default because we believe that MTP
is complementary to SEL on a per-tool basis: together, they address with greater specificity
the peculiarities of diverse families of applications, and the choice allows minimization
of overhead balanced across a number of factors (see Section 4). In general, we believe
an approach to integration based on multiple enveloping protocols is likely to achieve the
greatest generality.

In the Oz implementation, the tool declaration notation has therefore been modified to
include the new portion shown between square brackets ("[.. -]") in figure 2, which is
optional and may be omitted for SEL (some but not all of these fields are meaningful for
SEL, as explained later, but defaults are assumed if they are not provided by the process
engineer). Note each tool declaration is represented as a subclass ofthe built-in TOOL class;
running tool execution instances are viewed as instances of these subclasses (although they
are not currently reified in Oz's objectbase).

The new fields have the following meanings:

• Path. Indicates the path name in the file system where the tool's envelope resides (or the
tool's own binary executable, since an envelope is not always needed for tool initialization
when using our MTP protocol, depending on the details of the tool). For example, an
envelope might prompt the user for tool parameters not managed by the environment
(such as a database volume).

• Host. An Internet address, given when it is necessary to run the tool on a specific host
because of some restriction (perhaps due to pragmatic licensing issues).

• Architecture. Used to indicate the machine architecture and/or operating system
on which the tool (and its corresponding envelope) is expected to run. When the host
is not specified, the system refers to the archi tecture specification and separate

130

www.manaraa.com

VALETIO AND KAISER 315

environment instance-specific configuration information, to determine a corresponding
default machine on which the persistent tool (and its envelope) will be invoked .

• Instances. This specifies the maximum number of copies of the tool that can execute
at the same time (0 means there is no upper limit). Independent of licensing issues, this
could be used to bound the system resources allocated to a heavy-weight tool in all its
instantiations .

• Multi - flag. This determines the behavior of MTP in managing the interactions
between multiple human users and a persistent tool instance. We distinguish among
four categories of tools, with respect to their single-user versus multi-user and single
tasking versus multi-tasking capabilities, through the cross-product of two orthogonal
dimensions:

- UNI versus MULTI: MULTI (multi-user) indicates that the same instance of the
program can be shared by several users, whereas UNI (single-user) allows only for
isolated work of each user on hislher own executing instance of the tool;

- QUEUE versus NO_QUEUE: where concurrent (overlapping) execution of multiple
activities with respect to the same tool instance is supported for NO_QUEUE (multi
tasking) but not for QUEUE (single-tasking).

It may seem counterintuitive to think of these dimensions as orthogonal. In the case of
MULTL QUEUE, i.e., multi-user and single-tasking, multiple activities on behalf of different
users can share the same tool instance, but only one actually controls it and views the user
interface at a time, in "floor-passing" fashion. For UNLNO_ QUEUE, i.e., single-user and
multi-tasking, multiple activities can execute simultaneously in the same tool instance (per
haps in distinct "buffers" or other tool-specific contexts-the tool need not be implemented
using multi-threading or parallel processing technology), but all must be on behalf of the
same user. The four cross-product cases are explained by relatively generic examples in
Section 4.1 and correspond to specific experiments elaborated in Section 5.

Each of the declarations following the brackets specifies the name of a activity together
with the file name of an envelope, distinct from the one that started up the tool (if any). The
activity-specific envelope is invoked whenever the corresponding activity is submitted to
the persistent tool. There are likely to be several qualitatively different activities that can be
performed using the same tool, so it is expected that mUltiple activity/envelope mappings
would be listed in the tool declaration. If so, multiple instances of the same activity or several
entirely different activities can be submitted to the same persistent tool execution. Formal
parameters and locking information are also listed (transaction management is outside the
scope of this paper, see (Barghouti, 1992; Heineman and Kaiser, 1995)). The envelope spec
ified by the associated task handles the passing of arguments back and forth to/from the en
vironment's repository as well as the details of interaction with a tool that is already running.

These declarations appear in identical form in SEL specifications, but in that case each en
velope invokes a distinct tool instance to perform the activity (and envelopes may be grouped
into the same tool declaration for abstraction reasons, without necessarily employing the
same external application program). We made no changes at all to Oz's process definition
facilities other than the tool declaration notation, and our approach is intended to be orthog
onal to the environment framework's mechanisms for workflow definition and performance.

131

www.manaraa.com

316 ENVELOPING SOPHISTICATED TOOLS

4. The integration protocol

We adopted what we call a loose wrapping approach, as opposed to the tight wrapping
currently effected in Black Box enveloping schemes. The latter relies on complete encap
sulation of all of the tool's actions inside a single envelope, whereas the former is instead
based on control of the tool's behavior (from the viewpoint of the PCE), with the enveloping
facility intervening only as the need arises during workflow execution and/or upon detection
of some external event relevant to the environment. A typical example of the former is when
the initiation of a process step (either automatically or through an environment command
selected by a user) requires the tool to perform some work, and of the latter when a tool
action saves some files that should be recorded in the environment's repository.

Control, as opposed to encapsulation, provides a means for long-lived and intermittent
dialogue between external tools and the environment; meanwhile, the tools continue their
execution effectively detached from the environment framework. Tight wrapping, on the
other hand, governs all phases of a tool's execution, from the moment of invocation to
termination; to perform multiple activities using the same tool, it must be explicitly and
repeatedly instantiated (even if on behalf ofthe same user) each time an activity is assigned
to the tool.

Our approach may be viewed as combining the advantages of conventional Black Box en
veloping and event notification systems like Field and YEAST (Rosenblum and
Krishnamurthy, 1991), where tools execute persistently but the server's concern is only
for events of interest to other tools and there are no separate "environment commands" or
"workflow" that control tools. The Forest extension of Field manages the propagation of
event notifications among tools according to "policies" (Garlan and Ilias, 1990), analogous
to Oz's process management services, and Provence is implemented on top of MARVEL

(Kaiser et al., 1988; Heineman et aI., 1992), the predecessor of Oz, but neither has any
means for requiring satisfaction of task prerequisites. These systems also do not address
one of our foremost requirements, to integrate multi-user tools, and few message buses
are concerned with groupware or even support multiple users per bus. Buses internal to
PCE frameworks such as ConversationBuilder (Kaplan et aI., 1992) and ProcessWEAVER
(Fernstrom, 1993) are exceptions.

Once we established loose wrapping as the overall principle on which to base our de
sign, we analyzed the major capabilities needed to implement our tool modeling facilities
(described in the previous section). We divide these functions into two categories: those
generally concerned with Black Box integration-Le., the abilities to invoke and terminate
an instance of a tool on demand, to parameterize that instance according to the correspond
ing process task, to transform objects from/to the environment's representation to/from
that required by the tool, to support and display the 110 flow between the wrapped pro
gram and its user(s)-and those abilities especially necessary given the nature of the four
tool categories of interest (i.e., the cross-product of UNI vs. MULTI and NO_QUEUE vs.
QUEUE):

1. Limit the number of co-existing (executing) copies of a given tool according to the
specifications set out in the tool's declaration, and to record and service previously
unsatisfied requests as soon as possible;

132

www.manaraa.com

VALETIO AND KAISER 317

2. Exploit the persistence of MTP-tools, in order to share a given instance among multiple
users-possibly emulating partial multi-user capability for programs not usually em
ployed for groupware;

3. Coordinate overlapping requests for access to an instance of a persistent tool from
separate users, to avoid deadlocks and starvation on the one hand, and of unintended
concurrency of several activities for programs that do not support any form of multi
tasking on the other; and

4. Record results of intermediate steps of the tool's processing, during the execution of
each single activity.

To fulfill these requirements, we have introduced several extensions to Oz's process man
agement services. Analogous extensions could be made to other environment frameworks.

4.1. Tool sessions

To encompass both serial and concurrent access to a tool instance, we introduce sessions,
which define the life-span of a persistent tool. A session normally begins with an OPEN

TOOL command and ends with a CLOSE-TOOL command, as illustrated in figure 3. A
session's body is made up of a set of activities, denoted MTP-activity in the fig
ure, determined dynamically as the users carry out their work within the environment.
Note that although the activities are listed in sequence, they could potentially overlap (for
NO_QUEUE tools).

tool could refer to any tool declared as MTP. The session identifier distinguishes
among simultaneously executing instances of the same persistent tool, so that multiple
users can choose to participate in a particular session opened by another user (for MULTI
tools). Both arguments are selected from menus. Users can ask to join an existing session
(if there are any) by clicking the corresponding automatically generated session identifier
when issuing an OPEN-TOOL command, or request a new session as shown in figure 4. The
current implementation does not provide any support for access control, e.g., specifying
which users are permitted to, or are required to, join a particular session. There is also no
support for providing parameters for tool initialization from within the environment, which
is less limiting than it sounds since the process steps that trigger incremental interaction
with the tool usually provide arguments from the environment's repository.

Leaving a session is achieved with a CLOSE-TOOL command applied to a session where
there are still other active users. In this case, the CLOSE-TOOL does not kill the tool instance,
but only changes internal information about the association between the user and the session.
Termination of the program follows the CLOSE-TOOL command of the last participant.

OPEN-TOOL tool [session]>

<MTP-activityA> <argumentsA> <session>

<MTP-activityB> <argumentsB> <session>

CLOSE-TOOL <tool [session]>

Figure 3. Tool session template.

133

www.manaraa.com

318

L0C"31 Server. J(i

s;'~~lon.,) Au l.,
5 • • Ion OPtlo,.

quit

ope" remote
close remote.
Q"",,~, ~ t.t~~~
(iO'S€i loo MA('ER

.a{tiV8 OZ

ENVELOPING SOPHISTICATED IDOLS

Oz 1.1.1 : xi @ am~ric3s:. psl .C's .C1llumbia.edu

current O~Jnrt: e<ker/KlfRI.eodellf l~tpfhf5f1 056-1 08711 (Iii-a 1

Construct Local Qu.,.,. Print) Mls< '

.f no'" ~
Ire. Ira",.! Win_Win r

sayed frames PDP

test

.J

;j

Figure 4. Oz MTP interface.

Besides setting the duration of a specific tool instance and providing a context for shar
ing an application, sessions are central in several other functions supported by our MTP
protocol. For example, they implicitly operate on what we call the Session Queue of a
tool. This feature allows us to satisfy the constraints posed by the ins tances field of a
tool declaration, accordingly limiting the maximum number of copies of the program that
can be active simultaneously. (Such a restriction could be violated due to tool instances
executing completely outside the environment, resulting in tool invocation failures.) When
OPEN-TOOL is issued, the system first checks whether the request is satisfiable given this
constraint. If the limit has been hit, the request is not serviced, but is recorded in the Session
Queue; when an already running session is terminated, the next queue entry is extracted
and automatically initiated (the user is effectively notified when the user interface of the
tool pops up on hislher workstation monitor).

Our design also allows for a special case where it is possible to use a persistent tool
without being compelled to issue the OPEN-TOOL and CLOSE-TOOL commands every
time, via an implicit atomic session that consists of only a single activity. Atomic sessions
are instituted by the system, transparently to the user, when a user intends to perform an

134

www.manaraa.com

VALETIO AND KAISER 319

activity associated with an MTP tool but has not previously opened or joined a session. In
that case, an implicit OPEN-TOOL command is automatically executed and the new tool
instance is marked as atomic by the environment, so that no other activities (or OPEN

TOOL/CLOSE-TOOL commands) can be directed to it. When the activity finishes, the tool
is shut down automatically.

Our sessions idea leads to a number of questions on how different users could, practically,
participate in the same session of a persistent tool, thus exploiting the same resources
and the collected state of the executing tool. In our MTP design, we stressed the facets
intended to accommodate in a natural way those applications that are inherently designed
for collaboration, or-a more ambitious goal-to exploit in a multi-user context those tools
that, even if not commonly employed in that manner, the environment builder considers
adaptable to and promising for collaborative activities.

Our four categories of tools provide a flexible solution to these problems: the valid values
of the mul t i - f lag field within the tool modeling specifications represent and enforce in
the protocol four working models, intended to cover as widely and as precisely as possible
the behaviors and requirements of various classes of persistent tools.

UNL QUEUE is the most basic category: with it, we intend to accommodate applications
that are strictly single-user and that could not adequately support concurrent operations
deriving from simultaneous MTP activities. Therefore each instance of such a tool is reserved
exclusively to the user who requested it in the first place, via an OPEN-TOOL command,
and the body of the session is made up of a simple sequence of activities that are never
permitted to overlap.

The most significant difference between MTP's UNLQUEUE and SEL is that multiple
operations can be sent to the same copy of the tool, under the control of the process engine,
by exploiting the newly introduced concept of Activity Queues: each UNL QUEUE session is
associated with an Activity Queue, which holds in first-come-first-served order the activities
waiting to take control of the tool instance.

Consider, for example, a drawing program with a relatively long start-up time (e.g., it
may load numerous fonts during initialization). Rather than force the user to wait several
seconds to bring up the tool for each of the increasingly detailed data flow diagrams the
process directs himlher to construct as part of a design document, the tool is invoked once
and then this executing instance is reused for each separate diagram. This model assumes
the tool provides interactive commands to load and store particular diagrams in the file
system or a database, as most drawing programs do. Each activity begins by loading an
existing diagram, indicating that a clean slate is needed, or simply expanding on the most
recently loaded diagram, and ends with storing that diagram, with arbitrary tool-specific
commands in between.

UNLNO_QUEUE is intended to satisfy more complex integration requirements and to
allow for more operational flexibility. Again, each tool instance is reserved for just one
user, but the full exploitation of the inherent multi-tasking (or multi-context) capabilities of
the tool is supported, by directing to the tool multiple simultaneous or overlapping activities.

One case is a multi-buffer text editor, where the user can easily switch among buffers with
an interactive command; perhaps two or more buffers can be shown at the same time. A
programmer might be part way through editing a particular source file when he /she realizes

135

www.manaraa.com

320 ENVELOPING SOPHISTICATED mOLS

that it would be useful to cut and paste some code from another file, and modify the copied
code, rather than type it in from scratch or call that other code as a subroutine. And while
looking at this other source file, the programmer decides to make some changes to it, too,
which may entail loading into the editor the header file(s) it imports, and so on. The process
dictates certain obligations, such as recompilation, static analysis, and/or code inspection,
for each edited file, perhaps somewhat different process segments depending on file type
(source vs. header vs. documentation) and/or on whether the programmer is the "owner" of
that file. Thus the editing of each file must be treated as a separate activity by the process,
while at the same time it is useful to load the files into different buffers of a single executing
instance of the editor rather than bring up a separate instance for each file.

If a tool is not inherently multi-user (as is the case for most current tools), but is declared
MULTL QUEUE, only the most rudimentary form of sharing is possible: different users are
allowed to join the same session, and therefore to access the same executing tool instance.
But they must "take turns" (if they happen to issue requests that overlap in time): they
are forced to wait in the Activity Queue until the previous activity is finished. Note that
users whose requests are placed in the Activity Queue may still execute other process
steps-or decide to abort and try again later (Oz's XView and Motif interfaces allow a
user client to context-switch at will among in-progress process segments, and many other
environments do likewise). Albeit limited, this form of sharing can be usefully exploited in
various collaboration scenarios, for example, by multiple users committed to take care of
different sequential stages of the same complex, long and composite process task, in which
all must employ the same external program. One can then think of the MULTL QUEUE tool
as a semi-permanent environment service for these users.

Any interactive tool could, in principle, be supported by MTP as a MULTL QUEUE tool.
But it would not always be particularly desirable or useful to do so. Imagine declaring
an electronic mail tool as MULTL QUEUE. Then one user might read and respond to one
incoming message, another user the next message, a third composes a new outgoing mes
sage, and so on. But such an activity sequence seems unlikely to be part of any practical
software development process. Instead, MULTL QUEUE is intended primarily for tools that
build up a substantial in-memory state and that-under normal usage-support a sequence
of activities that depend, at least in part, on the state constructed by previous activities and
on the efforts of distinct human users (or user roles).

One example might be a Lisp-based application that generates natural language, say for a
user manual, from a knowledge representation constructed during the requirements analysis
and functional specification phases of the software process. A sequence of human-directed
procedures are generally needed to turn the internal structure into prose appropriate for the
end-user of the system under development. A software analyst might initiate the work,
perhaps interleaved with activities performed by programming and/or quality assurance
personnel, to be polished off by a technical writer and reviewed by a customer representa
tive. Each user begins hislher activity where the last left off, with the tool's user interface
automatically redirected among user display devices as another user takes over. The differ
ent user roles bring different kinds and levels of expertise to bear on producing the finished
document. Note that while it is certainly possible to develop a knowledge-based assistant
that saves its relevant state in the file system between steps, allowing separate invocations

136

www.manaraa.com

VALETIO AND KAISER 321

for each user, a given tool is not necessarily constructed that way. Further, even if such
were available as an option (e.g., a Lisp image might be saved on disk), the heavy-weight
start-up overhead might be best limited to a single invocation per process segment rather
than once for each activity.

The MULTLNO_ QUEUE class was conceived to accommodate inherently multi-user sys
tems, taking into account their architectural and functional peculiarities. MTP ensures in
this case that every OPEN-TOOL command issued by some user in the context of the same
session maps to the instantiation of a portion of the same multi-user system (e.g., a client
in a client/server architecture), which is assigned to that user.

While MTP is in charge of directing users' process-determined activities to MULTLNO_

QUEUE tools, it is the intrinsic multi-user nature of these applications that defines what
ever sharing and concurrency control policies are necessary to operate in the multi-user
and possibly collaborative context. The transparency or visibility among user-controlled
components with respect to their activities and data depends solely on the nature and the
purpose of the tool, which may support collaboration (in a groupware application) or en
force isolation (in a conventional database management system). The integration protocol,
per se, is not concerned with these issues.

An interesting MULTLNO_ QUEUE case is a process-centered environment, itself treated
as a tool. The controlling peE might specify the process at a relatively coarse granularity,
e.g., coding and unit testing an individual module would be represented as a single task
and integration testing of a subsystem as another. The controlled peE (i.e., the "tool")
might assist the users in carrying out the finer details of such tasks, e.g., editing, compiling,
constructing test harnesses, and debugging would be separate steps triggered by the code
and-test task. (We have explored elsewhere the advantages of integrating higher level and
lower level process definitions (Kaiser et aI., 1994).) We assume here that the controlled
peE is itself designed and implemented as a multi-user system, e.g., following a client/server
architecture as in Oz, to allow teamwork within each coarse-grained step as determined by
the finer-grained process. The two PCEs mayor may not be distinct instances of the same
system.

4.2. Architecture

The implementation architecture is necessarily specific to Oz, but we anticipate that a similar
approach would apply to other multi-user process-centered environments. We divided Oz's
clients into two categories, new proxy clients (or just proxies) and the original user clients.3

Proxy clients introduce into the architecture a new kind of long-lived entity, with the role of
spawning, managing, and achieving the integration of persistent tools. User clients are al
ways associated with human users of the system, who invoke and exit them at will, and there
fore they cannot be relied on to support the life cycle of a persistent tool instance. The Oz
server persists indefinitely but provides process execution and object management services
and most aspects of tool management discussed in this paper, but is intentionally not directly
involved with tool invocation (in part for performance reasons, see (Ben-Shaul, 1991)).

In our design, the session management commands (OPEN-TOOL and CLOSE-TOOL) are
issued by user clients on demand by human users and executed by the appropriate proxy

137

www.manaraa.com

322 ENVELOPING SOPHISTICATED 100LS

client, installed on the machine determined by the host or architecture data in the
MTP TOOL declaration and, if both fields are null, then on the same machine where the Oz
server is running. Subsequent activities submitted to the same tool may be initiated from a
user client's user interface, but are delegated to the proxy client. The same proxy manages
all persistent tools executing on the same host (with respect to activities managed by the
same Oz server).

Proxy clients do not need to interact directly with any human operator, so no user interface
is needed. However, they must manage the user I/O to/from persistent tools. This involves
redirection of simple textual I/O between the tool and the user client, and more significantly
the ability to display the tool's own graphical user interface (GUI) on the user's display.
Most inherently multi-user tools are able to dispatch private instances of their user interface
to each user, but for other tools (e.g., originally single-user tools extended by MTP to a
modest form of groupware) we exploited the public-domain xmove utility (Solomita et aI.,
1994), which transfers the GUI of a tool across workstations and X terminals. Resetting
the X Windows DISPLAY variable would be insufficient, since the GUI instance has to start
on one display device for one user, then move to another for a second user, etc. without
reinitializing the tool. (Note our implementation is inherently limited to those GUIs based
on X Windows.)

Another job assigned to proxies is to spawn, manage, and communicate with auxiliary
programs called watchers, each of which operates in the temporary directory for a tool
instance and "notices" any files created or updated by a tool. These files are mapped to
activity arguments according to a configuration file constructed by the envelope. The files
can then be transferred back to the environment when the activity is completed.

The new proxy client, here supporting MULTL QUEUE operation for a single persistent
tool, is depicted in figure 5. The internal composition of a proxy client is nearly the same as a
user client, except there is no user interface and an additional component handles watchers,
activity queues and other aspects of persistent tool management (the unlabelled piece of
the proxy client in the figure). The same proxy client may manage multiple persistent
tools, in which case there may be multiple activity queues-one for each UNL QUEUE or
MULTL QUEUE tool.

Besides the capability for the same tool instance to handle multiple activities, another
major difference between a SEL-like protocol and MTP's UNI cases, at least with respect to
environment frameworks similar to the Oz architecture, is forking of the envelope and, indi
rectly, the tool by a proxy client-often not on the same machine as the user client-which
could result in unnecessary communications overhead. MTP could easily be modified to de
fault to a proxy on the same machine as the user client, and even some of the user and proxy
client functions could be merged so that a separate proxy would not be needed when host
and archi tecture specifications are not supplied and/or match the user client machine.

4.3. Envelope execution

The most significant remaining issue that must be resolved to complete the design of our new
protocol is the way in which the execution of envelopes is accomplished, in the manner of
the loose wrapping concept. A typical MTP activity execution steps through the sequential

138

www.manaraa.com

VALEITO AND KAISER

f··· .. ····· ~

I ~ user client
user client

pm oms
L __ am'

i c

ft'/~ ! \A
Q~-to-o""!?)""" /Y,

! xmove
watcher i

, 11 ", (.... QooD"")
"'" -- -- "", • , .. ~\ .. 1I.1I .. 1'

acti~~; S
queue tj ~;v' ~

proxy client

Figure 5. New Oz architecture.

phases listed below:

IPC

server

323

1. A reservation phase, in which a tool session is acquired on behalf of the activity and
its associated user. This is carried out according to the session mechanism explained
above.

2. An initialization phase, in which the objects/files from the environment are made avail
able to the tool and any other parameterization functions are performed. We have em
ployed for this purpose a standard envelope template, which accepts as its parameters:
pathnames corresponding to file attributes in Oz's object management system; the path
to a dedicated temporary directory that is created when the tool is started up and within
which it normally operates; and some additional information used for internal housekeep
ing. The filename of this envelope is given by the tool declaration in its envelope-name
field.

The envelope is forked by the relevant proxy client, which sets up UNIX pipes for
communication. The first job of the shell script is to copy the files into the tool's dedicated
directory, thus making them visible to the tool; then any series of shell commands can

139

www.manaraa.com

324 ENVELOPING SOPHISTICATED IDOLS

be inserted, to perform whatever customization is necessary; finally, via the pipes, a
sequence of text messages is sent to the proxy, to be displayed to the user in a pop
up window. These messages may include the values of primitive attributes from Oz's
objectbase, and are intended to direct the loading of the files from the temporary directory
into the memory of the application and otherwise instruct the user as to what to do. For
example, the text presented in the window might indicate the command line or the
mouse action that the user should enter to get started on the activity, although the details
of performing the work are usually left to the user's own creativity and expertise.

Although we would have preferred a totally automatic loading procedure, as accom
plished by SEL, that it is hardly possible given the inherent restrictions of the Black Box
model: MTP tools are already running before the execution of any activity envelope,
and therefore cannot be initialized according to the individual activities. Moreover, we
cannot assume any special facilities on the part of the tool for simulating user input;
redirecting "stdin" is generally insufficient for GUI tools. However, the envelope, via
messages to the pop-up window, may still provide assistance and guidance to the users
in a practical and convenient manner.

A Grey Box variant of MTP would overcome this drawback, since the tool's pro
grammable facilities could act in collaboration with the envelope, producing and ex
changing messages interpreted as directives to be executed by the tool. (Some Grey Box
experiments have been conducted using SEL; see Section S.2.) In the White Box case,
this issue can usually be avoided entirely.

3. An operation phase, which includes free use of the tool with all its features, including
manipulation of the loaded data. There is no restriction on the use of the tool, because
it is accessed directly and not through any intermediary. The only requirement of
the MTP protocol (that cannot, however, be enforced in the Black Box case) is that the
execution must not be terminated through the tool's own internal command, menu button
or procedure, but only via the environment's CLOSE-TOOL command. In addition, both
MTP and SEL assume that users do not access the "hidden" file system sereptitiously,
e.g., loading files into the tool outside the workflow, although there is nothing beyond
an obscure organization and naming scheme (witness the filename the user is asked to
type in figure 9) to prevent them from doing so.

4. One or more data recording phases may interleave with other actions, whenever the user
saves temporary results of the work he/she is performing (the tool updates the copies of
the files kept in its own temporary directory, and not those internal to the environment).
Such events are monitored by the proxy client's watchers. A table of updated files is
maintained in the proxy and used in the next phase.

5. The conclusion of the activity, at which point control of the tool is released (with respect
to this activity). The user is required to designate the activity's completion as either a
success or a failure, via corresponding buttons in an MTP-specific extension to
Oz's activity management window (see figure 9). The data resulting from the execution
is stored back in the environment only if the user considers the activity successfully
completed.

SEL expects the envelope to automatically capture the return code of the tool after the
user decides to close it, but in MTP the tool remains indefinitely active; therefore the

140

www.manaraa.com

VALETTO AND KAISER 325

only means of ending an individual activity is to let the user decide when his / her work
is finished and to provide a way to communicate this fact (and how to handle the results)
to the envelope. Other differences are that SEL file updates are permanent, regardless of
the success or failure status: actually, SEL may return any value in a range determined
by the encapsulating task, each of which will result in different obligations following
that task. A similar facility could be added to MTP.

4.4. Wrapper structure

Envelopes provide a very flexible approach to tool integration. Consisting of either standard
scripts in some scripting language (as we have employed for MTP), or augmented variants
of the scripting languages that provide primitives to handle interfacing to the environment
and its data repository (as in SEL)-or possibly even written in a conventional program
ming language, wrappers offer programmable facilities that can handle the different needs
and idiosyncratic properties of a wide range of external applications in a convenient and
uniform way.

MTP uses two kinds of envelopes: the first is executed in response to the OPEN-TOOL
command, whereas the second operates at the granularity of the individual activity. The
latter is concerned mainly with preparing and loading the data that must be processed by
the program during the associated activity; the former is used to perform customization of
the tool, in order to present it to the user(s) in the correct state, in relation to the character
istics of the system and the work model indicated by the mul ti - flag specification. This
kind of customization script is usually very simple-no more than a few lines of straightfor
ward shell commands-but sometimes may be quite complicated, accounting for complex
interactions with the environment through watchers, and sometimes even for the invoca
tion of other auxiliary (usually simpler) scripts that perform supplementary bookkeeping
or actions in response to particular states of the application. An example of an interme
diate case is shown in figures 6 and 7; note the latter shows the contents of the auxiliary
close_oz_script invoked by the former.

In the case of the Oz implementation, the envelope writer must be a relatively skilled shell
programmer with some knowledge of the purpose and the functions of the wrapping protocol
to be able to easily set up the scripts. The burden might be lowered somewhat ifMTP were to
extend the scripting language with special-purpose primitives, perhaps somewhat different
sets to accommodate each of the four work models. However, the experience gained with
SEL shows that even with such primitives the scripts are not exactly trivial, since the intrinsic
specificity of the application programs necessitates ad hoc treatment for each case.

Language extension would be useful mainly to abstract and parameterize those operations
that must be carried out in a repetitive manner for any application; this seems more plausible
with the data interface between the tool and the environment, ratherthan with the adaptation
of their reciprocal behavior. Consider the example shown in figure 8: some of the shell
commands, those marked with the comment # always, must always be present in any
MTP activity-related envelope; others, indicated by the comments that contain the words
FILE parameters, are needed to handle certain types of incoming data, and are similar
but not identical in all the envelopes. These two sets of commands together contribute to
preparing the data involved in the activity.

141

www.manaraa.com

326 ENVELOPING SOPHISTICATED lOOLS

II!/bin/sh
lIinitialize variables
SERVER_PID=-l
CLIENT_PID=-l
II look if already hooked to the environment directory
FOUND='find . -name linkfile -print'
II if environment directory is not found
if [" x$FOUND" = "x" 1 IIno oz _ server active

then

else

liThe OZ environment directory is not set up
liThe shell script exit with -1
echo "The OZ environment directory is not set up properly",

» /tmp/SPC.log

exit -1;

IIChange to the OZ environment directory
cd linkfile
II test whether there is a server running
SERVER_PORT='find . -name .server_port -print'
if [·X$SERVER_PORT" = "X" 1 IINo server is running
then

fi

IIbring up the oz server
/u/bleecker/xi/bin/oz_server &
SERVER_PID=$!

liRe cord the server process id
echo $SERVER_PID>.server_pid
IIRecord the number of client run on the server
echo "Q">.client
sleep 5

IIstart up the client
/u/bleecker/xi/bin/gpc -x
CLIENT_PID=$!
lIincrease the number of clients
read CLIENT_NUMBER <.client
CLIENT_NUMBER='expr $CLIENT_NUMBER + I'

echo $CLIENT_NUMBER >.client

fi
CURR_DIR='pwd'

II trap a request to kill this OZ component and
II invoke close_oz_script to take care of this task.
trap '/u/bleecker/xi/Rivendell/Mtp/mtp/close_oz_script ,

$CURR_DIR $CLIENT_PID; exit I' 2
wait

Figure 6. Example initialization script for a multi-user client/server tool.

142

www.manaraa.com

VALETIO AND KAISER

#!/bin/sh
$1 tool_directory

$2 oz client process id

echo "Close the client and server!\n"> &2
read CLIENT_NUMBER < .client

if [$CLIENT_NUMBER ! = 1)

then

else

fi

CLIENT_NUMBER='expr $CLIENT_NUMBER - l'

echo $CLIENT_NUMBER > .client

kill -9 $2

read SERVER_PID < $l/.server_pid

kill -9 $2

kill -2 $SERVER_PID

#take care of the garbage
rm $1/. client

rm $l/.server_pid

Figure 7. Example termination script for a multi-user client/server tool.

327

The other shell commands, marked by the # tool-dependent comments, are con
cerned with operating the tool towards the goal of the task at hand. It is clear that in the
general case the size and the complexity of this last set is dependent on the wrapped appli
cation, of the supported work model and, especially if a lot of direct interaction with the
user is necessary, of the activity to be performed. In contrast, the former two sets are rela
tively independent of all these factors; hence it would be easier to invent scripting-language
extension facilities to express them.

However, it would also be possible (and desirable) to define some ad hoc constructs
for use in those tool-dependent statements that communicate to the user the actions that
he/she should perform, e.g., to carry out the loading of activity arguments into the tool
instance, during the initialization portion of an MTP activity. In figure 8 these messages are
implemented simply with echo commands prefixed by a common string (# * * * #); the
output is redirected through pipes maintained between the envelope and the proxy client
that initiated it, and the proxy is in charge of displaying the messages to the user in a pop-up
window. One could certainly imagine more sophisticated facilities for guiding the user.

5. Tool integration examples

To test the facilities described in the previous sections, we have used several available
in-house applications and off-the-shelf tools. The purpose of these tests was to gain confi
dence in the viability of the new MTP protocol, and in particular to challenge its ability to
accommodate a wide range of variability in the nature of the wrapped applications.

143

www.manaraa.com

328 ENVELOPING SOPHISTICATED lOOLS

#!/bin/ksh
#input parameters:
$1 tool dir.
$2 C file
$3 compile status
$4 compile log file
$5 C file proto

<----- MTP additional parameter
<----- NOTE: FILE parameter
<----- Literal
<----- NOTE: FILE parameter
<----- For later extension to match

$6 local project tag
$7 EnDoFAtTrSEt
$8 task identifier

<----- SEL editor envelope functionality
<----- marks end of arguments from process
<----- MTP additional parameter

$9 client identifier <----- MTP additional parameter

LOGFILE= "/tmp/ForkLog"
echo "start up enveloper" »$LOGFILE

debugging code
debugging code

cp $2 $4 $1
CFile='basename $2'
CompileFile='basename $4'
CPath='echo $l/$CFile'

copy all FILE parameters into the tool dir.
for all FILE parameters

for all FILE parameters
for all FILE parameters

CompilePath='echo $l/$CompileFile'
F_LIST_DUMMY=$l/filelist_tmp

for all FILE parameters
always

F_LIST=$l/filetable # always
touch $F_LIST_DUMMY # always
echo $9 $8 $CFile $2 »$F_LIST_DUMMY # for all FILE parameters
echo $9 $8 $CompileFile $4 » $F_LIST_DUMMY

for all FILE parameters
echo $F_LIST_DUMMY »$LOGFILE # debugging code
FOUND= 'find $1 -name filetable -print' # always
if ["x$FOUND" = "x" 1 # always
then

else

fi

F_LIST_CAT=$l/merge_list
cat SF-LIST_DUMMY $F_LIST > $F-LIST_CAT
rm $F_LIST_DUMMY
mv $F_LIST_CAT $F_LIST

echo \#***\#TYPE: CTRL-xf $CPath
tool-dependent

if [$3 = "NotCompiled" 1 # tool-dependent
then # tool-dependent

echo \#***\#TYPE: CTRL-x 2

always
always
always
always
always
always
always
always

: load code file

tool-dependent
echo \#***\#TYPE: CTRL-xf $CompilePath

tool-dependent

display new buffer

load compiler logfile

fi # tool-dependent

Figure 8. Example activity script for a multi-tasking tool.

144

www.manaraa.com

VALEITO AND KAISER 329

Therefore, we have tried to define the degree of integration that can be reached and to iden
tify limitations (either based on the characteristics of the tool category under examination,
or specifically to the adequacy of our support to the single cases) or unresolved problems
we need to address during future development. The applications we used as examples were:

• idraw as a UNL QUEUE tool, where activities are queued for one-at-a-time execution
(the same user may submit activities from multiple Oz clients, and the user interface is
transferred among workstation monitors as needed);

• emacs as a UNLNO_QUEUE tool where steps are not queued but may overlap (typically
on a single monitor);

• A Lisp-based natural language processing system called FUF as a MULTL QUEUE tool,
where steps are queued for one-at-at-time execution (and the user interface is transferred
among users participating in the same session as needed); and

• Oz itself as a MULTLNO_QUEUE tool (that supplies its own clients for multiple users).

5.1. UNLQUEUE: idraw

idraw (Viis sides and Linton, 1990) is a popular public-domain drawing tool, commonly
used to develop pictures and diagrams stored in a postscript form. It provides an intuitive
graphical user interface employing a well-known paradigm based on mouse movement and
menu selection to operate on a virtual canvas shown within an X window. idraw is intended
to be single-user; although it supports multiple buffers, we ignore that feature here, and treat
the system as if it were necessary to save the current document before loading a different
one. This limited use of idraw serves as an example of the category of programs where such
restrictions are inherent. From our point of view, idraw presents some additional features
of interest since it fulfills our definition of heavy-weight tool: there is a relatively long
initialization time following its invocation4•

In our experiment, we employed a distinct activity, parameterized by a file attribute from
Oz's objectbase, to construct a complete diagram or to allowing editing of an existing
diagram stored in that file, with the details of the drawing left to the creativity and expertise
of the user. That is, a activity's envelope sends a message to be displayed in a pop-up
window, telling the user to load a file with a particular pathname, and briefly instructs
the user regarding the purpose of the drawing to be constructed for that file. The user is
responsible for using idraw's normal command to later save that file, prior to announcing
the conclusion of the activity. This accounts for a simple interaction model that is common
practice in the use of such kind of tools; however, it would alternatively be plausible to
invent activities and corresponding envelopes to operate at a much finer level of granularity,
for example, "select the line icon and insert a vertical line two inches to the left of the
triangle", but we doubt this would be useful (except perhaps as part of a tutorial in the use
of a system devoted to the management of graphic documents).

The construction of the corresponding wrapper, and of wrappers for most UNL QUEUE

applications, is actually very simple: the only tool-dependent statements are aimed at
instructing the user on how to load the input file and (optionally) on what he/she must do
with it.

145

www.manaraa.com

330 ENVELOPING SOPHISTlCA TED TOOLS

A few words are in order regarding our intentionally restrictive use of idraw: we had
some trouble finding a good candidate for the most basic UNL QUEUE category, among
the interactive tools we had on hand for testing (SEL seems adequate and completely
satisfactory for non-interactive tools, such as compilers, that must be restarted for each
new set of arguments anyway); idraw on the other hand seemed to have many of the
properties that we were looking for in a UNL QUEUE candidate. However, we recog
nize that it would normally be deemed UNLNO_ QUEUE, because of its intrinsic multi
buffering capability (see Section 5.2). Further, one could imagine employing idraw in a
multi-user context, where one user starts a picture and others add to and finish it, anal
ogous to the work model in Section 5.3, in which case idraw could even be designated
MULTL QUEUE.

Given all of the above, one may have the impression that perhaps the UNL QUEUE

category is not really necessary. However, we expect that environment builders will discover
cases where they intend a tool to be used in a certain restricted way within the workflow,
and enforcement of UNL QUEUE would prove useful.

In general, UNL QUEUE appears suitable to deal with those applications that do not present
any multi-tasking capability and do not seem particularly adaptable to multiple users, but are
most conveniently handled as persistent tools. The main advantages of persistence for this
class of tools, and the most valuable improvements introduced by MTP's loose wrapping
compared to tight wrapping as in SEL, is the reduction of start-up overhead (since the tool
need be invoked only once) and the user can run ordered sequences of activities on the same
instance of the program without losing its internal state.

5.2. UNLNO_QUEUE: emacs

emacs (Stallman, 1981) is one of the most readily available and widely used text editors;
its sophisticated functionality and features make it a very useful tool, which nearly reaches
in itself the status of a single-user programming environment. All of its commands are
expressed with sequences of keystrokes, augmented with mouse pointing and selection;
its latest versions also support menu selection, at least for its main features. One of the
most useful properties of emacs, and one of the most important for us with respect to this
discussion, is its buffering capability. This enables the user to operate simultaneously on
mUltiple files, keeping several buffers in the background and switching among them on
command. Coupled with the ability to split the display and hence show more than one of
the buffers, this feature is of great use to perform complex and incremental editing sessions
that involve as many different data sets as needed.

Many users would prefer to use emacs in the natural fashion available outside a process
centered or otherwise task-oriented environment framework, which is to create and kill
buffers, load and save files, and cut and paste among buffers/files, as the urge arises during
perhaps very long work sessions5 . emacs demonstrates the most obvious limitation of
conventional Black Box wrappers-that is, all arguments must be supplied on the command
line at tool start-u~in which some peculiarities of the application do not fit welI with the
protocol's design and are left unsupported, but it is nevertheless possible to integrate the
program in some form.

146

www.manaraa.com

VALETIO AND KAISER 331

MTP's UNLNO_QUEUE class allows for overlapping multiple activities that involve
loading various buffers of the same executing emacs instance with the desired files for the
user's editing sessions. MTP then employs watchers to allow mapping of each modified file
to the corresponding activity and hence discriminates what file attributes must accordingly
be modified inside the environment at the end of the activity. The use of a pop-up window
during the initialization phase of each activity, and extensions to the standard activity
window to indicate completion, effectively isolates the overlapping activities, in the sense
that their data flow and status with respect to the on-going process are independent.

In our experiment, we employed individual activities, parameterized by file attributes,
to edit programming language or documentation files; the details of the programming or
writing were the concern ofthe user. That is, an activity's envelope would display a message
on a pop-up window telling the user to load the file with a given pathname, as shown in
figure 9, and perhaps briefly explain to the user the purpose of the code or prose in that file
(not shown in the figure). Rather than simply asking the user to edit, the envelope might
instead request the user to repair the syntax errors found during the last compilation-by
sending a file containing those error messages to another buffer as part of the same activity.

I I!mtlcs8canr.l,ps'.cs.C'olumbllUdu.
1 ~::.~~~:_::U~:~:i~tM~=:_~~~_~~: ___________ .. _________

Oll .l .t : I'll Q. "mlBrlcu.psl..cs.eolumb la.edQ

loa I S.rvt! . l(i Current OlJjen:. Ir"b'IK~r/lJ!b!"(kfrb.l/ft~lnd.II/HtD/hts/992- I<t rul@ clio

SIS' "n ~"I C<)O$truct 1«&1 Query ~ Pfjnl Mise ,. ra",Jat\

lor Print IJIforQlallon for Object ... on. .d
RIghl4 fhangfl Cun-enl Ob)en

tool
rU:'SISTENT TOOL: Interface for conun.nd: mtp_edltl Lmaln.c(2181048&O.Il)

obJ'

"I ,., S JS"'nd Co·t Kee p n

"ltp_edltl (I _ mlln ,c) Bld; C ... lb.
t£) ,,~.ed lt1tt._ .. t".c;)

1=

:G
TVPE: CTAl Ilmpit 1~CS'xt82S5~i15S.3103671 m.,I"

--
on It,n I-

I
~, L.L· ._--

.!.-:I'-=

Figure 9. MTP activity initiation.

147

www.manaraa.com

332 ENVELOPING SOPHISTICATED IDOLS

The complete script of an emacs wrapper of this kind is shown in figure 8; it performs the
loading of a C source file together with the results of the last compiler run, if unsuccessful , to
display the generated error messages. Again, the user must give emacs's normal command
to save the source file. He/she may choose to indicate that the completion of the activity
has been successful, by committing changes to the environment's repository via the Good
(success) button in Oz's activity window. Then the workflow may automatically continue
to other tasks, as illustrated in figure 10, where MTP and SEL activities may be arbitrarily
intermingled in a single process fragment. Or the user decides not to save his/her work, by
selecting the Bad button (failure), which has the effect of withdrawing whatever intermediate
saves were performed during the work and noticed by the watchers. As with idraw, we did
not consider finer-grained activities such as "add a new floating point variable to function
f and initialize it to pi", but the implementation supports them.

A previous attempt to extend Oz's enveloping mechanism had focused on emacs as a test
case, and tried to resolve the problems posed by the desired incremental data exchange with
the environment. This previous attempt exploited a facility not provided by most tools: an

Oz 1.1.1 :).;1 @. anu!ricas.psl.c;:s.eolulJ\bla..edu

lOCAl Servl"r: liel C~n·enl Object: 1. / bl .. "J.or/u/bl •• clolr/xi/ RI ."d."/Hrp/M'i9~2-

S8JSIf)n Rules Construct W .. I Qu.ry Prin r HIsot;: ..

Left.: Pril.llnforhlaUOIl for OIJJett
Right: Charlne Current Object

. _Mster

~t I~I
:'

; P(RSISTENT TOOL:. Interfact for command: IlUP_ f'dit 1 t _maln .c(2181 O ... 8GO.l :))

Dono) R,-Q)(,C'ut, SlY' R.(<<d Keep

compi l(!'(t_ nlaln,d , ..
J

~ •. "'~' •. "
~ /,

dlf't~(t.eJt,)

~
COIIPl t.u..-Uln.c)

• . j .-.----- -;''''';''--J
HOOIF lEO: LIla n. (I

S6/02121[18:l0) xl co 0,1.
In/b I.ocker lu/bl •• cker Ixi/Ri Yondell/mol . .I.hlred/coroto -0 -Ii ncl udes
In/bl .. "ker lu/bl •• cker Ixl/RI yond.ll/" 0/hf./l02-!-1 055/1 0520' lX50tl I"WLul n. cI t
_aain . c)
In/bloockor/u/b ' .. cker Ixl/Ri Yend,ll /I1tp/hf./l024-1 055/1 052111)15111 1 .. IL.,I n.c/t
Jain .c.h. in

h .--- . /envs/co.pl1 ._local . env(159):
In/bl.eeker/ulb ' .. eker Ixt/RI yondel l /" 01 . .I,hlred/corDto: not found
./env,/coap11e_loul . env(1n): . . /shar.d/conff9-t11es:
./envs/co.pll._1 ocal . • nv(170):

not found

In/bl •• cker/u/b I .. c~e r Ixt/Rlvendoll /I1tol • • /shared/gerw>roto : not round
ge(-OSUM ~9 -c -Wall ~pedantlc -ansi -tincludes ·in ; Lllin .(
-out:tJliin.c.o
co_ptle successful. vie. results with v1 .. Err

J

Figure 10. MTP aClivily complelion.

148

www.manaraa.com

VALETIO AND KAISER 333

extension language. emacs' extension language, called E-Lisp, allows users to define their
own new functions and commands, and thus customize emacs to their applications.

Ad hoc E-Lisp functions were coupled with an augmented version of SEL, to effect a
Grey Box integration, where the environment could perform loading of additional files
into the same emacs instance at any time and discern which files had been updated. No
special effort was required by the user, in contrast to the attention he/she must pay to
MTP's pop-up window. This was achieved using one wrapper for the entire session, which
dealt with addition of new buffers as new activities were submitted, rather than using a
separate wrapper per activity. There was a major drawback to this approach, however: only
one final status result could be returned to the environment, when emacs and its wrapper
terminated, and all files were effectively recorded into the environment's repository at this
same moment. In other words, it was not possible for the process to treat separately the
different sets of data acquired throughout the work session-a central feature of MTP.

Later during the development of MTP, we looked at E-Lisp again to pursue Grey Box
integration. Ad hoc E-lisp functions implemented a direct interface between emacs and the
watcher utility, and also completely automated the initialization phase of the activities. The
conclusion phase, particularly the choice of the success or failure return status for the
separate activities run on the same instance of emacs, is still an explicit responsibility of
the user even under this paradigm.

In general, UNLNO_QUEUE appears appropriate for tools with some internal multi
tasking, multi-buffer or multi-context capability, but still not particularly useful or desirable
for multi-user access. The main advantage of persistence for this class of tools is that the
user can run partially ordered activities on the same instance of the program, without losing
its intermediate state information, and possibly allowing for sharing or splicing (cut-and
paste) of intermediate results. Cut-and-paste can be intentionally directed among activities
directed by the process, or even within a single activity that simultaneously presents multiple
file arguments to the tool, in either case with the envelope's messages to the pop-up window
instructing the user what to do. Note there is no means for preventing, from the environment,
user-initiated cut-and-paste once the tool is designated as UNLNO_QUEUE.

5.3. MULTLQUEUE: FUF

FUF is a sophisticated unification-based tool running on top of Lisp and is used, among
other things, in natural language processing research for the generation of sentences from
corresponding syntactic data structures (Elhadad, 1993). It defines hierarchical procedures
that apply in sequence one or more separate layers of unification rules to its input structures
as well as to the new structures produced by each step of the procedure-in order to obtain
as output all the valid surface forms, under the constraints posed by the language rules.
FUF is a typical Lisp-based interpreted application, in that it that supports various kinds of
interactive tracing facilities and has the option to test and execute various data and program
files, by loading and swapping them on the fly. As with most interpretive tools, it maintains
sufficient information in memory to reflect the progress of its elaboration through the series
of commands issued to it since start-up. Moreover, like many query systems constructed
on top of Lisp, there is a long start-up time and it engages a considerable amount of system
resources (notably main memory and swap space) and thus qualifies as a heavy-weight tool.

149

www.manaraa.com

334 ENVELOPING SOPHISTICATED TOOLS

One of the main reasons for this choice as our exemplar MULTL QUEUE tool is that it
is easy to imagine a scenario in which, in order to process some data with FUF, multiple
unification procedures are needed, each of which is the responsibility of a different member
of a development group. Our paradigm could facilitate the testing and execution of the
various phases of the project through a (modest) form of groupware: sequentially, each
developer would load into FUF its own program, run it on the appropriate data and refine it
as much as needed, and produce at the end an output that is also the input for the next step,
also leaving the system in the correct state to begin the following activity. MTP moves the
user interface among the users as they take their turns. The final outcome of the overall
workflow would be produced by a single instance of the system and as the result of the
collaboration of several users. Analogous collaborative work models could be applied to
other programs, which outside the MTP framework could not be employed in this way. We
have recently used the commercial FrameMaker word processing system in MULTL QUEUE

style; although it supports multiple buffers, it does not provide machinery for multiple users
and thus aUI movement support is needed.

The envelopes we devised for this case study are devoted to loading within the memory
of FUF a specific unification program. and to handle the correct system configuration
for it. by asking the user to type the appropriate Lisp commands. The user might know
little, if anything, about the configuration issues involved: he/she needs only to follow
the instructions appearing in a pop-up window, since each envelope is specialized towards
a separate portion of the group work. After this initial customization. the user is left
completely free to query FUF and Interact with it in the typical fashion of Lisp-based
interpretive applications. Any files produced as result of these operations may be imported
into the objectbase when the success choice ends the activity, as described above.

From a general point of view, the MULTI- QUEUE category allows the reuse of single
instances of such computationally expensive programs throughout a series of activities.
Another important point in favor of supporting this class is that the information retained
in the tool's memory space (and not necessarily persistently on disk) represents both the
current state of the system and the history of its past performance, and is generally necessary
for generating the answer to new queries. This makes even more valuable the ability of the
MULTL QUEUE work model to support applications with long-duration work sessions that go
beyond any individual process step, and to ensure common access to them to any set of users.

The most relevant consequence of the creation of this category is indeed that, by exploiting
Activity Queues and thexmove facility that achieves passing of control over the user interface
among users involved in a session, it allows us not only to conveniently integrate a vast
and peculiar family of tools, but also to actually modify at the same time their intrinsic
single-user nature and extend their use along the serial groupware lines described above.
We consider this as one of the most interesting and meaningful results of this work.

5.4. MULTLNO_QUEUE: Oz

We decided to use Oz itself as a testbench for the MULTLNO_QUEUE category. The main
reasons for this choice were the familiarity we have with Oz as a complete multi-user sys
tem and the in-house availability of the application in a ready-to-run state. Oz. as a typical

150

www.manaraa.com

VALETTO AND KAISER 335

client/server system (and unlike most applications based on peer-to-peer architectures),
poses, in the most general case, the problem of treating differently the OPEN-TOOL com
mand initiating a session, when it is necessary to start-up both the tool's server and a client,
from those subsequently issued to join the session, which obtain further copies of only a
client. Conversely, the last CLOSE-TOOL command in a session must deal with shutting
down the tool's server. Moreover, since one can optionally employ a daemon that automati
cally starts up the Oz server with the first client and automatically shuts it down when the last
client exits, Oz can also be used to simulate the behavior of non-hierarchical architectures,
which do not need special treatment for the activation of its first and termination of its last
components.

The intrinsic difficulties of dealing with these issues were solved in the context of the
envelope indicated by the path field of the tool declaration and invoked by the OPEN

TOOL command. The designated envelope is invoked exactly once per session for all other
categories of tools, but in the case of MULTLNO_QUEUE is invoked separately for each
user who joins the session-and thus must be able to, internally, distinguish its first from its
subsequent invocations with respect to the same persistent tool. Oz's initialization envelope
is shown in figure 6; this envelope handles the shut-down of Oz's server by invoking the
auxiliary script given in figure 7. MTP, with its MULTLNO_QUEUE class, is therefore able
to support a generic multi-user tool, by forking and providing copies of the program to
every participant in a session, as required by its structure.

MTP could easily be extended to allow for two distinct initializatiqn envelopes in the
MULTLNO_ QUEUE case, or in all cases-so that the first user to join a session and all
subsequent users may be treated differently (of course the two scripts may be identical if no
distinction is needed for the particular tool). Similarly, MTP could be extended to handle yet
another separate envelope triggered by the CLOSE-TOOL command, or a pair of envelopes
distinguishing between the last user to leave a session and all previously exiting users.

During our experiment with Oz, we devised MTP activities that perform operations
within an in-progress workflow (the process state as well as the product data is persistent
across sessions as well as tasks and activities within a session). Some wrappers instruct the
user, with the usual pop-up messages, on how to use Oz's GUI to browse the objectbase,
inspect the process definition task set, etc.; this could be useful for training new users.
More significantly, it is also simple to ask users to initiate specific Oz tasks, or sequences
of tasks. Alternatively, the MTP activity might simply instruct the user(s) as to what is
to be accomplished, and leave it to the user(s) to determine how best to achieve that goal
within the process supported by the MTP-invoked Oz instance (not to be confused with the
MTP-invoking Oz instance).

This raises the possibility of an Oz meta-process that controls one (or more) Oz pro
cess(es), effecting a form of hierarchical workflow system. This could potentially address
a certain limitation of Oz as a PCE, namely that relationships among tasks within a process
are formed only with respect to satisfying local constraints, the task prerequisites and obli
gations, and there is no global topology or "grand view" (Kaiser et aI., 1994). However,
that grand view could feasibly be defined by the meta-process, by directing the workflow
among abstract or at least aggregate tasks, while each MTP-invoked process itself directs
only the workflow among concrete, perhaps primitive tasks, effectively filling in the details

151

www.manaraa.com

336 ENVELOPING SOPHISTICATED IDOLS

left out of the meta-process. The meta-process hierarchy could be elaborated to arbitrarily
many levels, not just two. Further discussion of this idea is outside the scope of this paper.

There are some important differences between the integrations of collaborative tools,
like Oz, and non-collaborative tools, which must be taken into account when consider
ing the capabilities of the MULTLNO_ QUEUE work model. In the non-collaborative case,
by definition each user is intended to be isolated from the rest and data access conflicts
among overlapping argument sets are sporadic. In the case of data from the environment's
repository, conflicts may be resolved before the arguments are passed to the tool by some
concurrency control mechanism provided by the PCE; Oz, by default, implements con
ventional atomic and serializable transactions composed of individual or multi-step tasks
(Heineman and Kaiser, 1995). When an external repository specific to the tool is employed
(e.g., a database volume), the tool is assumed to have its own intrinsic concurrency control
facilities.

In the collaborative case the issue of shared data becomes more problematic, even though
most of the multi-user machinery is necessarily offered by the wrapped tool itself. A simple
example is that of a multi-user editor (Dewan, 1993) invoked in the context of a groupware
activity: the program itself permits and is able to deal with concurrent modification of its
internal data, but from the viewpoint of environment's data repository it is necessary to
support a concurrency control policy that allows multiple writers of the object containing
the edited file attribute(s); this is achieved in Oz by defining and loading application
specific concurrency control policies, written in a notation (Heineman, 1996) that permits
definition of extended transaction models including "cooperative transactions" (Kaiser,
1994). Concurrency control, per se, is not in the strictest sense part of the wrapping facility,
but is nevertheless essential in order to fully integrate this class of tools. Further discussion
of this topic is outside the scope of this paper.

6. Related work

As we pointed out in the previous sections, tool integration is of central importance to every
effort to build efficient and practical software engineering support systems; therefore many
studies have concentrated on defining and exploring the meaning and the dimensions of the
term integration as applied to environments. Wasserman (1989), for example, identified
five different kinds of integration:

• Platform. Concerned with interoperability among tools, achieved through the use of a
common set of system services;

• Presentation. Stress on members of a toolkit giving the same "look and feel", via
common GUI concepts and design;

• Data. Sharing data between different tools and handling the data relationships among
objects produced by them;

• Control. Monitoring the tools' operation, and using such information to guide the
development process; and

• Process. Realizing a well-defined software development process, by defining and track
ing its steps.

152

www.manaraa.com

VALETIO AND KAISER 337

According to this categorization, the work presented in this paper would be categorized
mainly as control integration, even though guided by process.

In the attempt to fulfill the various requirements of control integration, and to overcome its
inherent difficulties, the software engineering community has developed a wide spectrum of
different approaches. Systems and methods are quite numerous, even when one decides
as we do in the rest of this section-to neglect what is probably the largest category:
symbiotic collections of tools that (as, for instance, in the case of UNIX (Kernighan and
Mashey, 1981» are sometimes claimed as environments themselves, although they typically
realize only platform integration.

Many methods embrace the White Box paradigm, with great variation among them with
respect to the amount of tool code that must be generated or modified to achieve integration.
An extreme approach in this sense is the realization of a set of custom tools, all managed by
a common framework; typical and well-known examples are language-based environments
generated by Gandalf (Habermann and Notkin, 1986) or the Synthesizer Generator (Reps
and Teitelbaum, 1989), where usually tiny tool fragments are organized for execution in an
incremental fashion as small portions of the program are edited, or interpretive systems such
as Smalltalk (Goldberg and Robson, 1983), in which all the tools are combined together at
run-time in the memory space of the language interpreter.

For many other environments, the common framework realizing a form of White Box
integration of their toolset-focused on the data dimension-is represented by the database
where the results of all the development activities, in their intermediate and final stages, are
stored and shared. The tools are on the one hand forced to be closely related, since they must
be able to use the same data formats, and on the other hand benefit in terms of performance,
because they can reuse data produced by other utilities during previous operation. Some
example databases intended for use by environments are GRAS (Kiesel et ai., 1993), based
on an extension of the classic Entity-Relationship data model, and Damokles (Dittrich
et ai., 1986), which employs schemas in the form of attributed graphs. Adele 2 (Belkhatir
et ai., 1991) enhances this methodology via a system of triggers connected to the state of the
database, so that data modification by one tool is recognized and may cause the invocation
of others.

The idea of assigning the role of main integration principle to a common object -oriented
data repository has been employed quite widely, including by several of the projects aimed
to define standards for building generic tools with a high degree of portability and interop
erability, and therefore widely reusable-although only under the standard's specifications.
PCTE (Gallo et ai., 1989) is probably the best known of such standards. The goal of PCTE
is to create a set of services and facilities, called a public tool interface, complete enough
to support tool implementors in very different situations and domains; many environment
prototypes and projects (Thomas, 1989; Bremeau, 1989; Georges and Keommer, 1989)
already exploit this facility. Another proposed standard that exploits an object-oriented
repository for its integration mechanism is the Ada-specific CAIS-A (Munck et ai., 1989).

A different approach to the White Box paradigm, intended to be more cost-effective
than building custom toolsets around a given framework, is represented by the class of
systems based on event notification-whose stress is on control integration rather than
data integration. Field (Reiss, 1990) is viewed by many as the archetype of this class

153

www.manaraa.com

338 ENVELOPING SOPHISTICATED IDOLS

of system: its basic principle is the addition of interface modules that send and receive
specialized messages to the code of generic tools (in some cases this can be achieved by
Grey Box extensions or Black Box wrappers). The messages produced by a tool are sent to
a centralized component, known as the Broadcast Message Server (BMS), to inform it about
the actions performed during the work session. The BMS elaborates them and produces
further information that is sent on to other tools, who have registered for that pattern of
message without necessarily any specific knowledge regarding the tool that produced it, in
order to coordinate their operation.

YEAST (Rosenblum and Krishnamurthy, 1991) is another system using a form of event
notification: it also has a client/server structure, in which the server accepts from the clients
event pattern definitions associated with action specifications. It is also able to recognize
the occurrences of events in the general computer system, such as time passage, timestamp
modifications etc., or can be notified of such occurrences, either interactively by users or
automatically by tools. In response to an event recognition, YEAST takes the actions that
have been previously associated with that event.

Poly lith (Purtilo, 1994) combines an event-driven approach with another technique in the
spectrum of White Box integration: tool fragmentation. While entire external tools can be
incorporated in Polylith, by relinking with the provided libraries that support the interface
to the system's kernel, more often tools are identified with simpler services-or modules or
subroutines-whose structure is declared in a service database, and whose free combination
and communication is used to obtain the performance of various complex, full-fledged
applications and to carry out all the tasks supported by the environment. Further, modules
are configured in a distributed fashion, and may even be packaged up and moved among
hosts during execution (Purtilo and Hofmeister, 1991). Many commercial message bus
products, such as Sun Tooltalk, DEC FUSE and HP SoftBench, combine ideas introduced
in Field and Polylith.

Tool fragmentation (usually in larger pieces than for the language-based editors above)
is the basic integration principle of several systems, including RPDE (Harrison, 1987;
Ossher and Harrison, 1990), Odin (Clemm and Osterweil, 1990) and IDL (Snodgrass and
Shannon, 1986; Snodgrass and Shannon, 1990). RPDE maintains tables that represent
its tool fragments as the cross-product of objects (i.e., structural components that can be
manipulated by applications) and roles and methods (i.e., procedural components used to
act upon objects). Odin has a very similar concept of objects and of the tool interactions
that manipulate them; it also provides a language to specify tasks and composite tools,
whose operators are represented by tool fragments and where objects play the role of their
operands. Similarly, IDL proposes a notation to define the structural and functional features
of its tools, each of which can be seen as a "building block" with a front-end for input, a
composite structure defining its algorithm, and a back-end for its output. IDL declarative
statements also describe how to connect several of these components into composite tools.
The same kind of notation is now used as part of the CORBA distributed computing standard
to describe data transmitted among clients and servers (Soley and Kent, 1994).

Since White Box, in all of its flavors, is the kind of integration most frequently im
plemented by environment builders, less work has been done on Grey Box methods.
This paradigm does not require any code modification to the tools, which instead must

154

www.manaraa.com

VALETIO AND KAISER 339

provide an extension language or API, so that functions can be written to interact with the
environment. Unfortunately, relatively few applications (aside from database management
systems) are equipped with features that allow to build arbitrary functional interfaces to an
environment framework. An attempt to address this limitation is presented by Notkin and
Griswold (1988), who proposed a mechanism to dynamically and incrementally extend the
functionality of generic software systems, without modifying the underlying source code.

Mediators have been proposed as a general architectural facility for integration of perhaps
legacy applications whose interfaces do not nicely fit together and cannot readily be modified
to match (Wiederhold, 1992). The mediators comprise special "glue" that make whatever
transformations are necessary among relatively independent subsystems to make them work
together, and often involve callbacks from the glue code to the application or vice versa
which assumes an API on the part of at least one of the several coupled components.
This approach has been applied to large environment components such as object-oriented
database management systems. (Wells et ai., 1992), transaction managers (Heineman and
Kaiser, 1995), and process engines (Tong et ai., 1994), as well as tools.

We maintain that Black Box integration, via tool wrapping/enveloping (a form of me
diation without the explicit API and callbacks), is probably the most flexible and general
methodology since its conceptual aim is the encapsulation in the environment of external
tools with no changes to their code, nor need for other kinds of functional capabilities.

ISTAR (Dowson, 1987) appears to be the initiator of studies along these lines. While
it provided its own development and integration toolkit to help construct new dedicated
programs according to the needs of a particular environment, ISTAR also allowed use of
third-party applications, simply by encapsulating their invocation into the code of ad hoc
envelopes that provide the correct interaction with ISTAR's database and user interface.

As we already pointed out in Section 2, Oz employs shell-script envelopes to invoke the
activities of process tasks and abstractly represents external application programs as object
classes in a toolbase. Another example is offered by ProcessWEAVER (Fernstrom, 1993),
a commercial system embracing Black Box integration and combining together a message
bus and a process engine. ProcessWEAVER models tools as objects of class TOOL, and
envelopes have the form of interpreted procedures with a syntax similar to UNIX shell
scripts. Most process-centered environments, among those that do not rely on White Box
methods, provide a system-specific enveloping language and lor exploit standard scripting
languages such as Tcl (Ousterhout, 1990) or Python (Watters, 1995).

Many systems provide some means for off-loading the execution of tools away from
where they would "normally" run. The simplest is remote job control, such as UNIX rsh,
which invokes a program or script on a specified host. It can be used to take advantage
of tools that do not operate on the user's machine. Some environments, such as Spice
(Dannenberg, 1982) and DSEE (Leblang and Chase, 1987), automatically distribute tool
executions to other hosts on a local area network. Their main goal is to achieve load
balancing, e.g., for a large system build. These approaches seem limited to batch tools,
such as compilers, with no user interaction. Batch tools inherently do not admit sharing of
a single execution instance, except in the degenerate sense that multiple users may happen
to want to compile the same version of a file and once is enough, but are easily amenable
to Black Box integration methods.

155

www.manaraa.com

340 ENVELOPING SOPHISTICATED IDOLS

WebMake (Baentsch et aI., 1995) may be the ultimate combination of remote job control
and load balancing, whereby tool invocations can be automatically sent over the Internet to
other sites on the World Wide Web that participate in the WebMake protocol by installing
a particular program (a "CGI-bin") in their website. The data might reside at a remote
site, or the tool might need to execute on a particular machine architecture. Server load
is considered, with the possibility of offloading to another host at the same site or back
to the originating site, with all necessary data transfers handled transparently. Interactive
tools can be invoked, but by delegating control to a resident user at the relevant Internet site
rather than sending the OUI back to the originating user. We have recently constructed a
Web-based Oz client (Dossick and Kaiser, 1996), which is intended to eventually support
the same kind of facility.

Various systems support some form of tool instance sharing. XTV (Abdel-Wahab, 1994)
is a utility related to xmove, but operating at a finer granularity and considerably more
sophisticated. It displays the graphical user interface of an X Windows tool to multiple users
simultaneously, as opposed to one at a time, but still only one user has control of the mouse
and keyboard at any given moment. Tools may be integrated (with XTV, not a PCE) in Black
Box fashion with no modification or extensions. If we had employed XTV instead of xmove6 ,

then most of our MULTL QUEUE tools could nominally become MULTLNO_ QUEUE as far
as MTP was concerned, but still lacking facilities for truly concurrent work. Suite (Dewan
and Choudhary, 1992) is a toolkit for constructing shared OUIs for computer supported
collaborative work tools, where generally the tools must be modified or written from scratch
(i.e., White Box). It has been applied to a number of software engineering tools in Flecse
(Dewan and Riedl, 1993). Suite also utilizes floor-passing, as in our MULTL QUEUE, but
with the advantage-like XTV-that all users can see the tool's OUI simultaneously.

7. Contributions and future work

We have fully implemented all the facilities discussed in this paper, except as noted in
the text, and support the tools we chose as test cases for MTP's four work models. The
completed experiments-all of which run quite satisfactorily-have demonstrated the fea
sibility of employing wrappers for persistent tools within a process-centered environment
framework. We expect that an analogous approach would work for integrating legacy ap
plications into a variety of software development environment frameworks and other kinds
of integration architectures.

Further, we have introduced several useful concepts to the domain of Black Box tool
integration, including a categorization of tools into families with diverse multi-user and
multi-tasking capabilities, the notions of mUltiple complementary enveloping protocols
and of loose wrapping, the idea of interfacing with already-executing persistent instances
of programs external to the environment, and the ability to extend the functionality of in
trinsically single-user tools to partial sharing of their data and computational resources.
The support for directing tool execution to a proxy client, when the host or archi tec
ture field is non-empty, also extends to Oz's original SEL protocol, since the pragmatic
problems of host licenses and platform dependencies apply even to the relatively mundane
tools (compilers and the like) supported by previous approaches to Black Box enveloping.

156

www.manaraa.com

VALETIO AND KAISER 341

The MULTLNO_ QUEUE model presented here is best suited to qsynchronous groupware
applications, where users enter and leave the tool as they please. There is as yet no facility in
Oz to define, as part of the process, the circumstances under which tool sessions should be
automatically opened Ijoined and exited Iclosed; adding such a feature would still allow for
asynchronous groupware but more closely couple sessions with the workflow in a manner
similar to how individual activities within those sessions are supported. We have already
developed preliminary process support for synchronous groupware, in which multiple users
perform an activity together at the same time (Ben-Shaul et aI., 1994). For example, the
mul ti - flag field, originally introduced for MTP, is now used within SEL to identify tools
that support this kind of collaboration, so that the system can simultaneously submit the
activity and its arguments to the clients corresponding to multiple designated users (Ben
Shaul and Kaiser, 1995). We have also recently added support for either a human user or
the process to delegate control over pending tasks to alternative users (Tong et aI., 1994),
as opposed to machines, along with corresponding user interface support (agendas treated
as menus to select which of the enabled tasks to do next).

One interesting future direction would be to split off all tool management (for both MTP
and SEL) from the Oz server into a separate component, independent from the process
engine, that would execute as another operating system process distinct from the server,
user clients and proxy clients. This would lower the load on the server, simplify later
replacement of the component within the Oz system (if desired), and ease the incorporation
of both MTP and SEL facilities into other environment frameworks.

Acknowledgments

Prof. Kathy Mckeown provided the FDF application and served as the second reader for Mr.
Valetto's Masters thesis (Valetto, 1994). Peter Skopp played a major part in designing and
implementing the architectural changes needed to introduce proxy clients into Oz, a variant
of which are used on a one-to-one basis to support low-bandwidth (modem) user clients
(Skopp, 1995). George Heineman conducted the SEL Grey Box experiment involving
emacs, and developed the watcher utility as part of that effort. Sonny Xi Ye is working
with Prof. Kaiser on continued development of MTP, and generated the envelope scripts
and screen dumps included in this paper. An extended abstract of this paper appears as
Giuseppe Valetto and Gail E. Kaiser, Enveloping Sophisticated Tools into Computer-Aided
Software Engineering Environments, IEEE Seventh International Workshop on Computer
Aided Software Engineering, July 1995, pp. 40-48.

Notes

I. The first use of the term "envelope" to refer to tool wrapping, that we know of, was with respect to the ISTAR
system (Dowson, 1987).

2. SEL and many of the other Oz facilities mentioned in this paper were originally developed for our earlier
system called MARVEL.

3. Proxy clients and user clients were initially referred to as Special Purpose Clients and General Purpose Clients,
respectively (Valetto and Kaiser, 1995).

4. idraw takes about 15 elapsed seconds to start-up on a Sun SparcStation 10 workstation.

157

www.manaraa.com

342 ENVELOPING SOPHISTICATED lOOLS

5. The second author has been known to keep the same emacs instance running for months, obviously persisting
over numerous and often unrelated tasks.

6. We chose xmove over XTV primarily because the former was developed by another group at Columbia.

References

Abdel-Wahab, H.M. XTV. http:// www.cs.odu.edulwash_citlXTV/doc/xtv.html.
Baentsch, M., Molter, G., and Strum, P. 1995. WebMake: Integrating distributed software development in a

structure-enhanced Web. In 3rd International World Wide Web Conference, Darmstadt, Germany, Elsevier
Science B.V. http.//www.igd.fhg.delwww/www95/proceedingslpapers/51/WebMake/WebMake.html.

Barghouti, S.N. 1992. Supporting cooperation in the MARVEL process-centered SDE. In 5th ACM SIGSOFT
Symposium on Software Development Environments, H. Weber (Ed.), Tyson's Comer VA. Special issue of
Software Engineering Notes, 17(5):21-31.

Belkhatir, N., Estublier, J., and Melo, W.L. 1991. Adele 2: A support to large software development process. In
1st International Conference on the Software Process: Manufacturing Compulese Systems, M. Dowson, (Ed.),
Redondo Beach CA, IEEE Computer Society Press, pp. 159-170.

Ben-Shaul, I.Z. 1991. An object management system for multi-user programming environments. Master's thesis,
Columbia University, Department of Computer Science, CUCS-O I 0-91.

Ben-Shaul, I.Z. Kaiser, G.E., and Heineman. G.T. 1993. An architecture for multi-user software development
environments. Computing Systems, The Journal of the USENIX Association, 6(2):65-103, Spring.

Ben-Shaul, I.Z. and Kaiser, G.E. 1994. A paradigm for decentralized process modeling and its realization in the
Oz environment. In 16th International Conference on Software Engineering, Sorrento, Italy, IEEE Computer
Society Press, pp. 179-188.

Ben-Shaul, I.Z., Heineman, G.T., Popovich, S.S., Skopp, P.D., Tong, A.Z., and Valetto, G. 1994. Integrating·
groupware and process technologies in the Oz environment. In 9th International Software Process Workshop:
The Role of Humans in the Process, e. Ghezzi, (Ed.), Airlie VA, IEEE Computer Society Press, pp. 114-116.

Ben-Shaul, I. and Kaiser, G.E. 1995. A Paradigmfor Decentralized Process Modeling. Boston: Kluwer Academic
Publishers.

Bremeau, C. 1989. The PCTE Contribution to Ada Programming Support Environments (APSE). In Software En
gineering Environments International Workshop on Environments, F. Long (Ed.), of Lecture Notes in Computer
Science, Chinon, France: Springer-Verlag, 467: 151-166.

Chase, M. and Reubenstein, H. 1992. An assessment of KBSA and a look towards the future. Technical Report
RL-TR-92-163, Rome Laboratory.

Clemm, G. and Osterweil, L. 1990. A mechanism for environment integration. ACM Transactions on Programming
Languages and Systems, 12(1): 1-25.

Dannenberg, R. 1982. Resource Sharing In A Network Of Personal Computers. PhD thesis, Camegie Mellon
University Department of Computer Science.

Dewan, P. (Ed.) 1993. Special Issue on Collaborative Software, of Computing Systems, The Journal of the USENIX
Association. University of California Press, 6(2), Spring.

Dewan, P. and Choudhary, R. 1992. A high-level atld flexible framework for implementing multiuser user interfaces.
ACM Transactions on Information Systems, 10(4):345-380.

Dewan, P. and Riedl, 1. 1993. Toward computer-supported concurrent software engineering. Computer, 26(I): 17-
27.

Dittrich, K.R., Gotthard, w., and Lockemann, P.e. 1986. Damokles-A database system for software engineering
environments. In Advanced Programming Environments, of Lecture Notes in Computer Science, Springer
Verlag Berlin, 244:353-371.

Dossick, S.E. and Kaiser, G.E. 1996. WWW access to legacy client/server applications. In 5th International World
Wide Web Conference, Paris, France, pp. 931-940.

Dowson. M. 1987. ISTAR-An integrated project support environment. In ACM SIGSOFTISIGPLAN Software
Engineering Symposium on Practical Software Development Environments, P. Henderson (Ed.), Palo Alto, CA,
December 1986. Special issue of SIGPLAN Notices, 22(I):27-33.

Dowson, M. 1987. Integrated project support with ISTAR.IEEE Software, 4(6):6-15.

158

www.manaraa.com

VALETTO AND KAISER 343

Elhadad, M. 1993. Using Argumentation to Control Lexical Choice: A Unification-Based Implementation, PhD
thesis, Columbia University, Department of Computer Science.

Fernstrom, C. 1993. PROCESS WEAVER: Adding process support to UNIX. In 2nd International Conference on
the Software Process: Continuous Software Process Improvement, Berlin, Germany, IEEE Computer Society
Press, pp. 12-26.

Gallo, F., Boudier, G.G., and Thomas, I. 1989. Overview of PCTE and PCTE+. ACM SIGPl-AN Notices, 24(2).
Garlan, D. and Ilias, E. 1990. Low-cost, adaptable tool integration policies for integrated environments. In 4th

ACM SIGSOFI Symposium on Software Development Environments, R.N. Taylor (Ed.), Irvine CA, Special
issue of Software Engineering Notes, 15(6):1-10.

Georges, M. and Koemmer, C. 1989. Use and extension ofPCTE: The SPMMS information system. In Software
Engineering Environments International Workshop on Environments, F. Long (Ed.), Lecture Notes in Computer
Science, Chinon, France, Springer-Verlag, 467:271-282.

Gisi, M.A. and Kaiser, G.E. 1991. Extending a tool integration language. In 1st International Conference on the
Software Process: Manufacturing Complex Systems, M. Dowson (Ed.), Redondo Beach CA, IEEE Computer
Society Press, pp. 218-227.

Goldberg, A. and Robson, D. 1983. Smalltalk-80 The Language and its Implementation. Reading, MA: Addison
Wesley.

Habermann, A.N. and Notkin, D. 1986. Gandalf: Software development environments. IEEE Transactions on
Software Engineering, 5E-12(12):1117-1127.

Harrison, W 1987. RPDE3: A framework for integrating tool fragments. IEEE Software, 4(6):46-56.
Heineman, G.T. 1996. A Transaction Manager Component for Cooperative Transaction Models, PhD thesis,

Columbia University Department of Computer Science, CUCS-O I 0-96. Forthcoming.
Heineman, G.T. and Kaiser, G.E. 1995. An architecture for integrating concurrency control into environment

frameworks. In 17th International Conference on Software Engineering, Seattle WA, ACM Press, pp. 305-
313.

Heineman, G.T., Kaiser, G.E., Barghouti, N.S., and Ben-Shaul, I.Z. 1992. Rule chaining in MARVEL: Dynamic
binding of parameters. IEEE Expert, 7(6):26-32.

Kaiser, G.E. 1994. Cooperative transactions for multi-user environments. In Modern Database Systems: The
Object Model, Interoperability, and Beyond, W Kim (Ed.), Chap. 20, ACM Press, New York, pp. 409-433.

Kaiser, G.E., Feiler, P.H., and Popovich, S.S. 1988. Intelligent assistance for software development and mainte
nance.IEEE Software, 5(3):40-49.

Kaiser, G.E., Popovich, S.S., and Ben-Shaul, I.Z. 1994. A bi-Ievellanguage for software process modeling. In
Configuration Management, WF. Tichy (Ed.), Trends in Software, Chap. 2, John Wiley & Sons, (2):39-72.

Kaplan, S. (Ed.) 1993. Conference on Organizational Computing Systems, Milpitas CA: ACM Press.
Kaplan, S.M., Tolone, W.J., Carroll, A.M., Bogia, D.P., and Bignoli, C. 1992. Supporting collaborative soft

ware development with Conversation Builder. In 5th ACM SIGSOFI Symposium on Software Development
Environments, H. Weber (Ed.), Tyson's Comer VA. Special issue of Software Engineering Notes, 17(5): 11-20.

Kernighan, B.W. and Mashey, lR. 1981. The UNIX programming environment. Computer, 12(4):25-34.
Kiesel, N., Schurr, A., and Westfechtel, B. 1993. GRAS, a graph-oriented database system for software engineering

applications. In 6th International Workshop on Computer-Aided Software Engineering, H.-y' Lee, T.F. Reid,
and S. Jarzabek (Eds.), Singapore, pp. 272-286.

Krishnamurthy, B. and Barghouti, N.S. 1993. Provence: A process visualization and enactment environment.
In 4th European Conference on Software Engineering, Lecture Notes in Computer Science, Springer-Verlag,
Garmisch-Partenkirchen, Germany, 717:151-160.

Leblang, D.B. and Chase, R.P. Jr. 1987. Parallel software configuration management in a network environment.
IEEE Software, 4(6):28-35.

Munck, R., Oberndorf, P., Ploedereder, E., and Thall, R. 1988. An overview of the DOD-STD-1838A (proposed),
the common APSE interface set, revision A. In ACM SIGSOFIISIGPLAN Software Engineering Symposium on
Practical Software Development Environments, P. Henderson (Ed.), Boston MA, November 1988. ACM Press.
Special issues of Software Engineering Notes, 13(5), November 1988 and SIGPLAN Notices, 24(2):235-247,
February 1989.

Nicol, lR., Wilkes, C.T., and Manola, F.A. 1993. Object orientation in heterogeneous distributed computing
systems. Computer, 26(6):57-67.

159

www.manaraa.com

344 ENVELOPING SOPHISTICATED IDOLS

Notkin, D. and Griswold, WG. 1988. Extension and software development. In 10th Inte~ational Conference on
Software Engineering, Raffles City, Singapore, IEEE, pp. 274-283.

Ossher, H. and Harrison, W 1990. Support for change in RPDE3. In 4th ACM SIGSOFT Symposium on Software
Development Environments, R.N. Taylor (Ed.), Irvine CA, ACM Press. Special issue of SIGSOFf Software

Engineering Notes, 15(6):218-228.

Ousterhout, J.K. 1990. Tel: An embeddable command language. In Winter 1990 USENIX Conference, Washington

DC, USENIX Association, pp. 133-146.

Popovich, S.S. 1992. Rule-based process servers for software development environments. In 1992 Centre for
Advanced Studies Conference (CASCON), 1. Botsford, A. Ryman, 1. Sionim, and D. Taylor (Eds.), Toronto ON,

Canada, IBM Canada Ltd. Laboratory, 1:477-497.

Purtilo, J.M. 1994. The POLYLITH software bus. ACM Transactions on Programming Languages and Systems,
16(1):151-174.

Purtilo, I.M. and Hofmeister, C.R. 1991. Dynamic reconfiguration of distributed programs. In 11th Interna
tional Conference on Distributed Computing Systems, Arlington TX, IEEE Computer Society Press, pp. 560-
571.

Reference Model for Framework of Software Engineering Environments: Edition 3 of Technical Report ECMA

TRl55. 1993. NIST Special Publication 500-211. Available as /pub/isee/sp.500-211.ps via anonymous ftp from
nemo.ncsl.nist.gov.

Reiss, S.P. 1990. Connecting tools using message passing in the Field environment. IEEE Software, 7(4):57~6.

Reps, T.W. and Teitelbaum, T. 1989. The Synthesizer Generator A System for Constructing Language-Based
Editors. Texts and Monographs in Computer Science. New York: Springer-Verlag.

Rosenblum, D.S. and Krishnamurthy, B. 1991. An event-based model of software configuration management. In

3rd International Workshop on Software Configuration Management, P.H. Feiler (Ed.), ACM Press, pp. 94-

97.

Skopp, P.D. 1995. Low bandwidth operation in a multi-user software development environment. Master's thesis,

Columbia University Department of Computer Science, CUCS-035-95.
Snodgrass, R. and Shannon, K. 1986. Supporting flexible and efficient tool integration. In Advanced Programming

Environments, T.M. Didriksen, R. Conradi, and D.H. Wanvik (Eds.), Lecture Notes in Computer Science,

Springer-Verlag, Trondheim, Norway, 244:290-313.
Snodgrass, R. and Shannon, K. 1990. Fine grained data management to achieve evolution resilience in a software

development environment. In SIGPLAN '90 4th ACM SIGSOFJ Symposium on Software Development Envi
ronments, R.N. Taylor (Ed.), Irvine CA. Special issue of SIGSOFf Software Engineering Notes, 15(6): 144-

156.
Soley, R.M. and Kent, W 1994. The OMG object model. In Modern Database Systems: The Object Model,

Interoperability, and Beyond, W. Kim (Ed.), Chap. 2, ACM Press, New York NY, pp. 18-41.

Solomita, E., Kempf, J., and Duchamp, D. 1994. Xmove: A pseudoserver for X window movement. The X
Resource, 1(11): 143-170.

Stallman, R.M. 1981. Emacs the extensible, customizable, self-documenting display editor. In SIGPLAN SIGOA
Symposium on Text Manipulation, ACM, Special issue of SIGPLAN Notices, 16(6): 147-156.

Thomas, I. 1989. PCTE interfaces: Supporting tools in software-engineering environments. IEEE Software,
6(6): 15-23.

Thomas, I. 1989. Tool integration in the PACT environment. In 11th International Conference on Software Engi
neering, Pittsburgh PA, IEEE Computer Society Press, pp. 13-22.

Tong, A.Z., Kaiser, G.E., and Popovich, S.S. 1994. A flexible rule-chaining engine for process-based software

engineering. In 9th Knowledge-Based SoJhmre Engineering Conference, Monterey CA, IEEE Computer Society

Press, pp. 79-88.

Transcending Boundaries: ACM 1994 Conference on Computer Supported Cooperative Work. Chapel Hill, NC:

ACM Press.

Valetto, G. 1994. Expanding the repertoire of process-based tool integration. Master's thesis, Columbia University,

Department of Computer Science, CUCS-027-94.

Valetto, G. and Kaiser, G.E. 1995. Enveloping sophisticated tools into computer-aided software engineering
environments. In IEEE 7th International Workshop on Computer-Aided Software Engineering, Toronto Ontario,

Canada, pp. 40-48.

160

www.manaraa.com

VALETIO AND KAISER 345

Vlissides. lM. and Linton. M.A. 1990. Unidraw: A framework for building domain-specific graphical editors.
ACM Transactions on Information Systems. 8(3):237-268.

Wassennan. A.I. 1989. Tool integration in software engineering environments. In Software Engineering Environ
ments: International Workshop on Environments. F. Long (Ed.). Lecture Notes in Computer Science. Chinon.
France. Springer-Verlag. 467: 137-149.

Waners. A.R. 1995. The what. why. who. and where of Python. UnixWorld Online. Tutorial Article No. 005.
Wells. D.L.. Blakeley. lA.. and Thompson. C.w. 1992. Architecture of an open object-oriented database man

agement system. Computer. 25(10):74-82.
Wiederhold. G. 1992. Mediators in the architecture offuture infonnation systems. Computer. 25(3):38-49.

161

www.manaraa.com

Automated Software Engineering 3,347-367 (1996)
© 1996 Kluwer Academic Publishers. Manufactured in The Netherlands.

Use of Methods and CASE· Tools in Norway:
Results from a Survey

JOHN KROGSTIE johnkrog@idt.unit.no
Norwegian Institute of Technology (NTH), Faculty of Electrical Engineering and Computer Science, UNITINTH,
/Dr, N-7034 Trondheim, Norway

Abstract. Results on use of methodology and CASE-tools from a survey investigation performed in Norwegian
organizations are presented. The results are based on responses from 52 Norwegian organizations on a survey
investigation on development and maintenance.

Although there appears to be a trend towards the use of more packaged solutions, the investigation indicates
a larger proportions of application systems being developed as customized systems in larger organizations. The
presence of a comprehensive development and maintenance methodology and the use of CASE-tools are also
more prominent in larger organizations. Larger organizations also use statistically significant less of their effort
on functional maintenance. Even though, the impact of CASE-tools on the information systems portfolios of
Norwegian organizations are not yet large, and improvements in functional maintenance can not be attributed to
the lise of CASE. A notably different perception on the benefit of CASE-technology for productivity was observed
between users and non-users of CASE, but the difference was not found to be statistically significant.

Keywords: CASE, methodology, survey investigation

1. Introduction

In this article, we present some of the results from a survey-investigation being performed
in Norwegian organizations during the summer of 1993 on development and maintenance
of computerized information systems. The results being presented in the article deal mostly
with development manner, development methodology, use of organizational controls, and
the use of CASE-tools. Earlier papers have presented result from the survey on more main
tenance related topics (Krogstie, 1994a; Krogstie and SlIIlvberg, 1994). A comprehensive
report from the investigation is also available (Krogstie, 1994b; Krogstie, 1995a). Through
out the paper, comparisons are made with the results from other investigations. Whereas
these investigations primarily present descriptive results, we have included further statistical
analysis. None of the earlier investigations present an integrated investigation of the use of
CASE-tools and the use of a comprehensive development and maintenance methodology.

Section 2 describes our research method. Section 3 describes the dependant variables we
use in the analysis, whereas the main results are presented in Section 4. Section 5 contains
a summary of the results.

2. Research method

Two forms, one containing questions regarding the development and maintenance practice
followed in the organization as a whole, and one with questions regarding the maintenance

www.manaraa.com

348 KROGSTIE

of one application system, were distributed by mail to 350 Norwegian organizations. Most
of the results being reported in this article are based on the responses to the first form.
The organizations were taken from the list of member organizations of DND (Den Norske
dataforening), the Norwegian Computer Society. This population implicitly assured that
the forms were answered by organizations of some size which look upon computerized
information system support as important for their business. Whereas the average number
of employees of Norwegian organizations within the areas of manufacturing, industry,
trade and services is 8 persons (Central Bureau of Statistics of Norway, 1992), the similar
average among the respondents of our investigation was 2347, thus our respondents are
above average when it comes to size according to Norwegian standards.

The design of the forms (Krogstie, 1994b) was based on forms used in previous inves
tigations within the area of development and maintenance of computerized information
systems, in particular (Lienz and Swanson, 1980; Swanson and Beath, 1989; Henne, 1992).
In addition, a set of questions regarding the use of CASE-tools were included. The forms
were refined through several pilot fill outs before being distributed on a large scale.

On some of the questions, it was possible for the respondents to assess the quality of the
answers. There was also room for issuing additional remarks on many of the questions.
This, in addition to the general design of the forms enhanced the cross-checking of the
responses. Where djerepancies were discovered, these were further investigated by phone.
No rigorous post-investigation validation similar to what was done in Arnold and Parker
(1982) was performed.

A totai of 78 answers were returned, giving a response rate of 22%. Some of the
answers were negative, replying that the organization was not doing work of the sort which
was queried about. Other answers also had to be dismissed, giving us a total of 52 valid
answers as a basis for analysis. SPSS (Norusis, 1992) has been used for all statistical
analysis Jf the data. According to the distribution of the variables, statistical significance
has for hypothesis testing been determined either by using the twin-tailed Student t-test, or
the twin-:ailed Mann-Whitney test. In correlation analysis, Pearson's correlation coefficient
or Spearman's rank has been used as appropriate. Similar to (van Swede and van Vliet,
1994), \\'e apply a r-Ievel of 0.25 with a significance level of 0.05. Traditional tests for
normality of distributions to decide on the use of further analysis-methods were also applied
(Norusis, 1992).

2.1. Hypothesis

The following null-hypotheses were formulated based on the literature and experience:

• HI: There is no statistically significant difference between the maintenance effort in
organizations that have a comprehensive development methodology and those that don't.

• H2: There is no statistically significant difference between the functional maintenance
effort in organizations that have a comprehensive development methodology and those
that don't.

• H3: There is no statistically significant difference between the size of the organizations
that have a comprehensive development methodology and those that don't.

164

www.manaraa.com

USE OF METHODS AND CASE-TOOLS IN NORWAY 349

• H4: There is no statistically significant difference between the maintenance effort in
organizations that use CASE-tools in development and maintenance and those that don't.

• H5: There is no statistically significant difference between the functional maintenance
effort in organizations that use CASE-tools in development and maintenance and those
that don't.

• H6: There is no statistically significant difference between the size of the organizations
that use CASE-tools in development and maintenance and those that don't.

• H7: There is no statistically significant difference between the size of organizations when
it comes to how they develop their major systems (customized or packaged development).

• H8: There is no statistically significant difference in the perception of the benefits of
CASE between users and non-users of CASE-tools.

• H9: The institutionalization of organizational controls do not influence the behavior
during maintenance significantly.

3. Background information

The respondents to the survey were in: Manufacturing and industry (20), public services
(7), insurance and banking (8), trade (6), other areas (11). 80% of the organizations had
a yearly data processing budget above 5 mill. Nkr. The forms were filled out by persons
with long experience with information systems related work (median 18 years).

Work on computerized information system was divided into six categories in the survey:

I. Correcting errors in systems in production.
2. Adaption to a changed technical architecture.
3. Developing new functionality in existing systems.
4. Improving non-functional properties, e.g., performance of existing systems.
5. Developing new systems with functionality similar to the one found in old systems.
6. Developing new systems in new functional areas.

The four first categories are traditionally classified as maintenance activities, whereas the
last two are development activities. Functional development consists of work in category 3
and 6, whereas functional maintenance consists of work in category 1,2,4, and 5. A deeper
discussion on the usefulness of the distinction of functional maintenance and development
which are one of the areas which differentiate this investigation from previous investigations
of this sort is given in Krogstie (l995b).

3.1. Dependant variables

When investigating our hypothesis, we used the following dependant variables:

I. The percentage of the complete effort on development and maintenance of the application
systems portfolio that is used on maintenance.

2. The percentage ofthe complete effort on development and maintenance of the application
systems portfolio that is used on functional maintenance.

165

www.manaraa.com

350 KROGSTIE

3. The logarithm of the number of employees in the organization.
4. The logarithm of the number of employees in the data department.
5. The logarithm of the number of systems developers in the data department.
6. The logarithm of the number of major application systems in the organization.
7. The logarithm of the number of end-users of the application systems.

Whereas the two first indicate the distribution of effort, the five last are different indicators
of size of the organizations and their computerized information systems support. The
distributions of these variables as reported were skewed to the left. Skewed distributions are
quite regular in software-related research and call for very careful interpretations of findings
(Dekleva, 1992c). A conversion to a logarithmic form is often used, as also applied by us.
Such conversions normalizes the distribution, which is required for parametric statistical
testing.

Descriptive statistics of the dependant variables are given in Table 1, whereas tests for
normality for the normalized figures are given in Table 2.

The results presented in Table 2 do not give us any reason to reject the null-hypothesis
that the numbers for both traditional maintenance and functional maintenance are nor
mally distributed. This is also the case for the size measures, except for on the number

Table I. Descriptive data for dependant variables.

Figure Responses Range Mean Median SD

Maintenance 48 [10-100] 58.6 63.3 24.17

Functional maintenance 46 [10-90] 43.9 46.7 17.89

Number of employees 52 [20-35000] 2347 555 6499.54

Employees in data department 52 [1-250] 24.3 10 40.64

Number of systems developers 52 [0-87] 9.5 5 16.33

Number of major systems 51 [2-100] 10.3 5 18.86

User population 50 [20-5000] 541 250 883.80

Table 2. Tests for normality of dependant variables.

Shapiro Lilliefors
Figure Skewness Kurtosis wilks Sign. (K-S) Sign.

Maintenance -.1111 -.8133 .9559 .1386 .0706 >.200

Functional maintenance .1513 -.1)974 .9728 .4770 .0701 >.200

Log(employees) .5250 .3469 .0897 >.200

Log(data department) .1492 .1174 .0763 >.200

Log(systems developers) .5724 .5284 .9507 .0796 .0954 >.200

Log(major systems) .3896 .5085 .9489 .0618 .1332 .0296

Log(user population) .1979 -.1786 .9774 .6236 .0624 >.200

166

www.manaraa.com

USE OF METHODS AND CASE-TOOLS IN NORWAY 351

Table3. Correlating size and effort measures.

Figure r N p

Log(number of employees)

Log(Data department) .6705 52 .000

Log(systems developers) .6137 47 .000

Log(major systems) .5034 49 .000

Log(user population) .5623 50 .000

Maintenance -.1616 48 .272

Functional maintenance -.2685 46 .071

Log(data department)

Log(systems developers) .8854 47 .000

Log(major systems) .3841 49 .006

Log(user population) .6974 50 .000

Maintenance -.3496 48 .015

Functional maintenance -.4487 46 .002

Log(system developers)

Log(major systems) .4407 44 .003

Log(user population) .7003 45 .000

Maintenance -.2949 45 .049

Functional maintenance -.3115 43 .042

Log(major systems)

Log(user population) .3306 47 .023

Maintenance -.1874 46 .212

Functional maintenance -.2619 45 .082

Log(user population)

Maintenance -.2511 46 .092

Functional maintenance -.2509 44 .100

Maintenance

Functional maintenance .4000 46 .006

of major application systems. For this, only non-parametric tests are used. None of
the distributions are perfectly normal, since the kurtosis and skewness are different from
zero, but this would be expected even for a sample from a normal distribution (Norusis,
1992).

Inter-correlations of the variables are given in Table 3.
Significant figures are shown in boldface. We will not discuss the connection

between the size and effort measures in detail in this article. This is done in (Krogstie,
1995b).

167

www.manaraa.com

352 KROGSTIE

4. Results and discussion

The results are divided into three section:

• System development and maintenance methodology.
• Application of CASE-tools.
• Perceptions on the benefits of CASE-tools.

4.1. System development methodology

The development background for the major application systems in the responding organi
zations is illustrated in figure 1.

In another Norwegian investigation (Bergersen, 1990) 58% of the projects reported upon
were own development, 27% were packages with large adjustments and 8% were packages
with small adjustments (7% were a combination of two of these three).

The distribution of development background from the SwansonlBeath investigation
(Swanson and Beath, 1989) is for comparison illustrated in figure 2. The most notable
difference between the two Norwegian investigations and SwansonlBeath is in the number
of packaged systems being used. The greater percentage of packages is probably due to
that our organizations are on the average smaller, and as such do not find it cost-efficient in
all cases to develop customized solutions. (SwansonlBeath reported in their case-study a
median of 102 persons working in the data department, range [7-266], mean 95). Another
possible explanation is that it now exist better customizable packages than it did in the
late eighties. On the other hand did we not find any significant correlations between the
dominant development manner and the age distribution of the portfolio to support this. The
correlations between the percentage of the portfolio that is developed using the different
development methods and the size-measures are given in Table 4. The Spearman rank is
used. Since the number of systems being developed by the user organization was so small,
we do not show these figures (none of the correlations were significant).

Package. sma.
adjustment

170/.

Package, large
aquatmenl

11%

By outside firm
12"4

Figure 1. Development background of portfolio.

168

By IS-Ofganizahon
59"/.

www.manaraa.com

USE OF METHODS AND CASE-TOOLS IN NORWAY

Table 4. Development method vs. size.

Figure

Number of employees

Size of data department

Number of system developers

Number of major system

Number of end-users

Number of employees

Size of data department

Number of system developers

Number of major system

Number of end-users

Number of employees

Size of data department

Number of system developers

Number of major system

Number of end-users

Number of employees

Size of data department

Number of system developers

Number of major system

Number of end-users

r N

Percentage developed

.2265 50

.6016 50

.6968 50

.2498 50

.4588 48

Percentage developed

-.2505 50

-.3222 50

-.3165 50

.1381 50

-.1908 48

Percentage package

.2398 50

.2237 50

.1577 50

.1619 50

.0251 48

Percentage package

-.1783 50

-.3250 50

-.3313 50

-.3935 50

-.2661 48

Package, small
adjustment

By outside firm 2%
15%

By user
organlzat.m

t%

p

by IS-organization

.114

.000

.000

.080

.001

by outside firm

.079

.023

.025

.339

.194

large internal adjustments

.093

.1I8

.274

.261

.865

small internal adjustments

By IS
organization

820/.

.215

.021

.019

.005

.067

Figure 2. Development background of portfolio in (Swanson and Beath, 1989).

353

169

www.manaraa.com

354 KROGSTIE

Inter-correlating the development manner percentages gave that the percentage of systems
being developed by the IS-organization was negatively correlated with the percentage of
packages with small internal adjustments (r = -.5481, N = 50, p = .000), and so was
the percentage of systems developed by an outside firm (r = -.2901, N = 50, p = .041).

From the results in Table 4 it appears that organizations with larger data departments,
number of systems developers, and number of end-users have a larger percentage of cus
tomized application systems, whereas larger organizations with large data departments
have a smaller proportion of application systems made by outside firms. A large percent
age of packages with small adjustments is more often found in organizations with small
IS-departments and few end-users. Based on this, we reject hypothesis H7.

Before investigating on the use of an overall methodology we give an overview of the use
of organizational controls for handling of change requests and maintenance of the portfolio.
An overview over the use pattern is given in Table 5.

A comparison with earlier investigations (Lientz and Swanson, 1980; Nosek and Palvia,
1990) was given in Krogstie and SlIllvberg (1994) and showed that the pattern of orga
nizational controls was somewhat different. Some areas, like cost justification, retesting
of changes and batching of changes appears to be better taken care of in Norway than in
America. On the other hand, such controls as logging of user request, logging of changes
and performing periodic formal audits seem to be better taken care of in the American
organizations. The use of charge-backs also seems to be smaller. On the other hand, if we
look at how the organizational controls are used in the maintenance of individual systems,
we find that for instance only 32% answered 5 or 4 on a scale from 5 to 1 where 5 indicate
always and 1 never on the question Is the consequences of changes properly assessed?
Comparing this with the answer of 54% of organizations saying that all user request for
changes to the application system must be cost justified shows a rather high discrepancy.
This pattern is general, the application of many organizational controls are assessed to be
better than how they are actually used.

Table 5. Application of organizational controls.

Control Use

I. All user requests logged 77%

2. All user requests cost justified 54%

3. All changes logged and documented 67%

4. All changes are formally re-tested 79%

5. Changes are batched for periodic implementation 40%

6. A formal audit is made periodically 8%

7. Equipment costs are charged back to the user 40%

8. Personnel costs are charged back to the user 31%

9. Change requests are classified 60%

10. Update of documentation is ensured 25%

II. Users are informed of the status of their CRs 79%

12. The same routines are used for all CRs 58%

170

www.manaraa.com

USE OF METHODS AND CASE-TOOLS IN NORWAY 355

To check if the organizational controls actually do have an impact on behavior during
maintenance, we have split up the answers to certain questions in Part II of the investigation
according to if the organizational control is supported or not. The results are given in
Table 6. The first number refers to the organizational control, the second is the question
used in Part II, the third shows the mean value for those not using the control, whereas
the fourth indicates the mean value for those having the control institutionalized. The last
column indicates the statistical significance for accepting the hypothesis that the figures
from those having and those not having the controls institutionalized are equal.

The areas where the controls do not seem to have a significant impact on the behavior are
on keeping the users informed about change requests and on updating the documentation of
the programs. Apart from this we see that when comparing the work on separate systems
compared to the institutionalization of organizational controls, that these seem to influence
this work in most cases, rejecting H9.

When comparing the numbers for organizational controls further, we have divided them
up in three areas:

1. Handling change requests: This included controls I, 2, 9, 11, and 12.
2. Updating the existing application system: This includes controls 3, 4, 5, 6, and 10.
3. Charge-back of maintenance-costs: This includes controls 7 and 8.

Descriptive statistics for these areas are given in Table 7.

Table 6. Connection between use and institutionalization of organizational control.

Control

2

9

10

II

12

Table 7.

Question from part II

Is an overview of who is asking for changes kept?

Is statistics over this made?

Is the consequences properly assessed?
Is time and cost assessed for an individual change?

Is maintenance tasks categorized by type?
Is maintenance tasks categorized by importance?

When changing a program, is documentation updated?

Is the users informed on the status of CRs

Do all changes undergo the same kind of control

Descriptive data for organizational controls.

Figure Responses Range

Organizational controls 48 [I-!o]

Change requests controls 48 [0-5]

Maintenance controls 48 [0-4]

Charge-backs 48 [0-2]

No control

3.3

1.8

2.6
2.6

2.1

3.7

3.2

3.7

3.5

Mean Median

6.188 7

3.292 4

2.187 2

.708 0

Control

4.2

2.0

3.6
3.3

2.9

4.3

3.6

3.9

4.2

SD

2.647

1.473

1.232

.898

p

.065

.712

.001

.038

.067

.091

.243

.583

.049

171

www.manaraa.com

356 KROGSTIE

The distributions of these variables were all found to be non-nonnal thus Spearman's
rank is used in the further statistical analysis.

A comparison of the use of organizational controls and the dependant variables is given
in Table 8.

Overall, the use of organizational controls is more usual in organizations with large
data departments and many developers, and where there are many end-users. Charge
backs follow the same pattern, whereas only the size of the data department is significantly
correlated with the maintenance controls, and none with change-request related controls.

31 % of the respondents reported that they used a comprehensive development methodol
ogy covering all tasks of development and maintenance. Due to the small number of users
of individual methodologies we do not differentiate between different methodologies below.
All organizations having a complete development methodology had a yearly IS-budget of
more than 5 million Nkr. The descriptive statistics for the number of employees in these
organizations were:

Range [70-35000], Mean 5858, Median 1150.

Compared to the average, we see that overall it is organizations of some size that have a
complete development methodology installed.

Results from dividing the sample according to if the organization use a complete devel
opment method or not and investigating on the connection with our dependant variables are
given in Table 9.

Whereas all the size measures except the portfolio-size were significant, only functional
maintenance of the maintenance measures were significantly smaller in the organizations
having a complete development methodology. Based on this, we reject hypothesis H2, but
do not have grounds for rejecting hypothesis HI. We also reject hypothesis H3.

In Table 10 the results of a similar non-parametric test are given investigating the connec
tion between having a complete development methodology and the development manner
and the use of organizational controls.

As expected, we see that the use of organizational controls including the use of mainte
nance controls and charge-backs are significantly higher in organizations claiming to have
a comprehensive development and maintenance methodology. The same is not the case for
the use of change request-controls. Those having a comprehensive development method
ology have a significantly larger proportion of their application systems being customized,
and a significantly smaller proportion of packages with small adjustments, which is neither
unexpected comparing to Table 4.

4.2. Application of CASE-tools

CASE-technology was used by 27% of the organizations for development and 10% of the
organizations for maintenance. All organizations using CASE had a yearly IS-budget of
more than 5 million Nkr. The descriptive statistics for the number of employees of the
CASE-users were:

Range [150-35000], Mean 6645, Median 1000.

172

www.manaraa.com

USE OF METHODS AND CASE-TOOLS IN NORWAY 357

Table B. Use of organizational controls vs. size and effort measures.

Figure r N p

Organizational controls

Number of employees .2059 48 .160

Size of data department .3812 48 .008

Number of system developers .3232 44 .032

Number of major system .1879 46 .211

N umber of end-users .3316 47 .023

Maintenance -.0634 46 .676

Functional maintenance -.1899 44 .217

Change requests

Number of employees -.0975 48 .510

Size of data department .2312 48 .114

Number of system developers .1636 44 .289

Number of major system -.0604 46 .690

Number of end-users .2393 47 .105

Maintenance -.0774 46 .609

Functional maintenance -.2018 44 .189

Maintenance controls

Number of employees -.0327 48 .826

Size of data department .3016 48 .037

Number of system developers .2078 44 .176

Number of major system .1417 46 .347

Number of end-users .1319 47 .377

Maintenance -.0157 46 .918

Functional maintenance -.1349 44 .383

Charge-backs

Number of employees .4587 48 .001

Size of data department .2450 48 .093

Number of system developers .2088 44 .174

Number of major system .4018 46 .006

Number of end-users .3369 47 .021

Maintenance -.0185 46 .903

Functional maintenance -.0340 44 .827

173

www.manaraa.com

358 KROGSTIE

Table 9. Maintenance effort and size vs. comprehensive development method.

Yes No
Figure N Mean SD N Mean SD 6. P

Maintenance 14 50 25.929 33 60.9 22.215 -10.9 .150

Functional maintenance 14 34.2 13.947 31 47.1 17.253 -12.9 .018

Log(employees) 15 3.0834 .792 34 2.4813 .556 .004

Log(data department) 15 1.4526 .464 34 .8697 .451 .000

Log(system developers) 15 .9901 .471 30 .6204 .357 .005

Log(major systems) 14 .8266 .228 33 .7118 .254 .151

Log(user population) 15 2.6499 .548 32 2.2651 .463 .016

Table 10. Development manner and use of organizational controls vs. comprehensive development method.

Figure 6. P

Percentage developed by IS-organization + .011

Percentage developed by outside firm .208

Percentage package, large internal adjustment + .229

Percentage package, large internal adjustment .006

Organizational controls + .007

Change request controls + .263

Maintenance controls + .026

Charge-backs + .004

Compared to the average, we see that overall it is organizations of some size that uses CASE
technology. The CASE-users were from different areas, such as banking, construction,
packing, trade, interest organization, government, transportation, and media. Most notably,
all the respondents within the oil-industry (5) were applying CASE-tools supporting a
comprehensive development methodology.

10 out of the 13 organization using CASE-technology (77%) applied a comprehensive
development methodology. The CASE-users not having a comprehensive development
methodology were the smallest organizations in terms of employees that used CASE. We
would thus expect somewhat the same pattern as on development methods above. Table 11
gives an overview.

We see that it was basically large organizations who had adopted CASE-tools thus re
jecting hypothesis H6. Even if the amount on maintenance and functional maintenance was
less when using CASE-tools, (although not significant), we do not believe that it is the use
of CASE that is the main reason for this, but rather that CASE is being taken into use in
large organizations with an already developed development and maintenance methodology.
For the long-term success of the application of CASE-tools this seems promising, since
it is generally regarded as necessary to have a comprehensive development methodology

174

www.manaraa.com

USE OF METHODS AND CASE-TOOLS IN NORWAY 359

Table 11. Maintenance effort and size vs. use of CASE.

Yes No
Figure N Mean SD N Mean SD !'>. P

Maintenance total 12 49.4 25.416 34 61.5 23.970 -12.1 .143

Functional maintenance II 35.4 17.036 33 46.8 17.788 -11.4 .069

Log(employees) 13 3.1626 .786 35 2.4468 .545 .001

Log(data department) 13 1.4351 .511 35 .9030 .418 .002

Log(system developers) 13 1.0088 .560 32 .6209 .336 .006

Log(major systems) II .9488 .240 35 .6805 .220 .001

Log(user population) 13 2.6572 .540 33 2.2906 .476 .029

Table 12. Development manner and use of organizational controls vs. use of CASE.

Figure !'>. P

Percentage developed by IS-organization + .014

Percentage developed by outside firm .989

Percentage package, large internal adjustment + .428

Percentage package, large internal adjustment .000

Organizational controls + .041

Change request controls + .443

Maintenance controls + .085

Charge-backs + .016

in widespread use before applying CASE-tools supporting this methodology (Parkinson,
1990; Stobart et aI., 1993). We will discuss this further below, but have no support for
rejecting hypothesis H4 and H5.

In Table 12 a similar comparison is given with development manner and use of organi
zational controls.

Also here we find a similar pattern as for the use of a comprehensive methodology, with
the exception of the use of maintenance control which are not significantly higher among
the CASE-users.

A similar investigation in England reported that 18% of the respondents were using
CASE-tools in 1990 (Stobart et aI., 1991) whereas 26% were evaluating the introduction
of CASE at that time. In a foHow-up study in 1994 (Hardy et aI., 1995), 43% of the
organizations were currently using CASE-tools. Size-measures for these organizations
were not given in Hardy et al. (1995), Stobard et al. (1991), thus it is difficult to perform a
more detailed comparison.

It does not seem that any single CASE-tool has a dominant position in Norway, like for
instance SDW has had in Holland for several years (Kusters and Wijers, 1993; Wijers and
van Dart, 1990). No tool was reported to be used by more than two organizations, and a

175

www.manaraa.com

360 KROGSTIE

total of 11 different CASE-tools were mentioned. Neither in the UK is there any CASE-tool
that is predominant (Hardy et aI., 1995).

The average experience with the CASE-tools that was currently applied was 2.8 years,
ranging between a half and 8 years. 5 of 12 (42%) had used the CASE-tool for more than 2
year. In an investigation from Holland from 1989 (Wijers and van Dort, 1990) the similar
number was 11 % , whereas in the investigation from 1992 (Kusters and Wijers, 1993),53%
of the users had more than two years experience. From this it seems that application of
CASE may have come further in other countries, even if it is not possible to be certain about
this from the data we have available.

The CASE-tools supported between I and 4 of the major application systems in the
organizations (mean 1.7). Compared to the number of major systems in these organization,
we had that 21 out of 214 application systems were supported by CASE (10%). Looking on
the individual organization, the number of application systems supported by CASE varied
between 0 and 50% of the major systems, with a mean of 19%. Some of the comments
given by the respondents indicated that CASE has just recently been put to practical use,
and that CASE in many places is used to support only parts of application development and
maintenance.

Based on this, we feel that it is too early to assess the overall importance of CASE
on a portfolio level, since it seems to have had little influence on overall systems devel
opment and maintenance this far in most organizations. The results above on smaller
amount of effort on maintenance and functional maintenance among CASE-users are
probably linked to the size of the organizations and the presence of a/development
methodology.

Table 13 shows the usage-areas of the CASE-tools in the organizations.
Not surprisingly since almost all CASE-tools contain at least functionality for conceptual

modeling (Hewett and Durham, 1989), this functionality is used by almost all users. The per
centage of the source code being produced by the code-generation facilities varied between

Table 13. Use of CASE-tools.

176

Usage area

Conceptual modeling (ER. DFD etc.)

Drawing of screens and reports

Storing. administration and reporting
of system information

Code generation

Prototypinglsimulation for validation

Generation of DB-schema

Project and process management

Consistency checking of specifications

System test

Reverse engineering

?ercentage of users

92%

54%

54%

54%

46%

46%

31%

23%

15%

8%

www.manaraa.com

USE OF METHODS AND CASE-TOOLS IN NORWAY 361

10 and 100% , with an average of 48%. In half of the organizations using code-generation,
later maintenance was performed on the specification and design level for later regeneration
of code. In the other half, further maintenance was performed on the generated code.

4.3. Perception on the benefits of CASE-tools

On the perceived benefits of applying CASE-technology, the numbers in Table 14 were
reported. A five point scale with 5 indicating very important and 1 not important was used.
The first number indicate the total mean, the second is the mean assessed value from those
applying CASE, and the third is the mean assessed value from those not currently applying
CASE. D.. is the difference between these two values, and p indicates the 2-tail significance
value for equality of these means using a non-parametric test.

In Tables 15 and 16, the two groups are split and the tables are sorted on means.
In Tables 17 and 18 the two groups are similarly split according to the percentage of

respondents that regarded the aspect as very important.
From the presented tables, we see that both groups seem to agree on the importance

of CASE for improved maintainability of application systems, and also the reduction of
number of errors in the system, even if the CASE-users are not so optimistic on this. Worth

Table 14. Perceived benefits of CASE.

Aspect All User No-user t:,. p

a Increase the productivity of the developer 3.9 3.6 4.0 .3 .3058

b Support rapid proto typing and validation 3.8 3.9 3.7 -.2 .4929

c Simplify the development process 3.8 3.8 3.8 -.1 .7657

d Formalize/standardize the development process 4.2 4.3 4.1 -.2 .4041

e Reduce the time for application development 3.8 3.5 3.9 .4 .2603

Reduce the cost of application development 3.8 3.5 3.9 .3 .3939

g Improve the interface toward the system 3.0 3.3 2.8 -.5 .2586

h Integration of development phases and tools 3.2 3.6 2.9 .7 .0921

Automatic generation of documentation 3.6 3.6 3.7 .I .8176

Standardization of documentation 3.8 4.1 3.7 -.3 .3153

k Increased possibility of reuse 3.7 3.8 3.7 -.I .5530

I Improved maintainability 4.2 4.2 4.2 0 .8630

m Automatic code generation 3.3 3.2 3.4 .2 .9149

n Better control of the application development 3.1 3.8 3.7 -.2 .6921

0 Automating the project management 2.5 2.6 2.5 -.I .8176

P Automatic consistency checking 3.2 3.0 3.3 .3 .6780

q Reduce the number of errors in the system 4.0 3.8 4.1 .3 .3697

Fulfill user requirements 3.6 4.1 3.4 .7 .2389
All over mean 3.626 3.666 3.609

177

www.manaraa.com

Table 15. Benefits of using CASE, assessed by CASE-users.

Aspect Mean

d Formalize/standardize the development process 4.3

Improved maintainability 4.2

Standardization of documentation 4.1

Fulfill user requirements 4.1

b Support rapid prototyping and validation 3.9

c Simplify the development process 3.8

k Increased possibility of reuse 3.8

n Better control of the application development 3.8

q Reduce the number of errors in the system 3.8

a Increase the productivity of the developer 3.6

h Integration of development phases and tools 3.6

Automatic generation of documentation 3.6

e Reduce the time for application development 3.5

f Reduce the cost of application development 3.5

g Improve the interface toward the system 3.3

m Automatic code generation 3.2

p Automatic consistency checking 3.0

0 Automating the project management 2.6

Table 16. Benefits of using CASE, assessed by non-users.

Aspect Mean

Improved maintainability 4.2

q Reduce the number of errors in the system 4.1

a Increase the productivity of the developer 4.0

d Formalize/standardize the development process 3.9

e Reduce the time for application development 3.9

f Reduce the cost of application development 3.9

c Simplify the development process 3.8

b Support rapid prototyping and validation 3.7

Automatic generation of documentation 3.7

Standardization of documentation 3.7

k Increased possibility of reuse 3.7

n Better control of the application development 3.7

Fulfill user requirements 3.4

m Automatic code generation 3.4

p Automatic consistency checking 3.3

h Integration of development phases and tools 2.9

g Improve the interface toward the system 2.8

0 Automating the project management 2.5

www.manaraa.com

Table 17. Reasons being very important for using CASE, assessed by CASE-users.

Aspect Percentage

d Formalize/standardize the development process 50

r Fulfill user requirements 50

k Increased possibility of reuse 50

b Support rapid prototyping and validation 45

Standardization of documentation 33

Automatic generation of documentation 30

Improved maintainability 27

n Better control of the application development 27

q Reduce the number of errors in the system 25

g Improve the interface toward the system 22

h Integration of development phases and tools 20

c Simplify the development process 18

f Reduce the cost of application development 18

0 Automating the project management 10

a Increase the productivity of the developer 9

e Reduce the time for application development 9

m Automatic code generation 9

p Automatic consistency checking 0

Table 18. Reason being very important for using CASE, assessed by non-users.

Aspect Percentage

q Reduce the number of errors in the system 50

I Improved maintainability 43

b Support rapid prototyping and validation 41

Fulfill user requirements 37

a Increase the productivity of the developer 36

f Reduce the cost of application development 36

d Formalize/standardize the development process 35

e Reduce the time for application development 29

Standardization of documentation 26

Automatic generation of documentation 20

c Simplify the development process 19

k Increased possibility of reuse 19

n Better control of the application development 19

m Automatic code generation 19

p Automatic consistency checking 10

g Improve the interface toward the system 5

0 Automating the project management 5

h Integration of development phases and tools 0

www.manaraa.com

364 KROGSTIE

mentioning though, is that the factor of fulfilling user requirements seems to be more highly
regarded as a benefit of CASE among CASE-users, even if this is not statistically significant.
Neither is any of the other differences, thus we do not reject hypothesis H8. On the other
hand, note the difference on the question of integration of phases and tools, which are one
of the areas where integrated CASE tools are supposed to be most useful. The benefit for
increased productivity is assessed to be larger among those not using CASE than among
those using it. The non-users are also more positive on the effects of reducing time and cost of
development than those using it. This is in line with other investigations (Kusters and Wijers,
1993). The benefit of CASE for productivity has generally been a selling point among
CASE-vendors whereas investigations have shown that productivity in the short run in fact
tends to decrease whereas quality of the produced solutions tends to increase (House, 1993).

To investigate this area further, a factor-analysis (Norusis, 1993) was attempted, but the
test for applicability of this analysis gave a KMO-value of 0.4 which highly discourage
such analysis. We are also aware of that the technique that was used on this question has
certain flaws, since other benefits not in the list will seldom be mentioned, even if it is room
for suggesting own categories in the form. In Dekleva (1992a) it is illustrated that other
techniques can give different overall results on questions of this kind.

5. Concluding remarks

We have in this article presented some of the results from a survey investigation performed
among Norwegian organizations in the area of development and maintenance of information
systems regarding development and maintenance methodology and the use of CASE-tools.

Revisiting our hypothesis we conclude the following:

• H1: There is no statistically significant difference between the maintenance effort in or
ganizations that have a comprehensive development methodology and those that don't.
Not rejected.

• H2: There is no statistically significant difference between the functional maintenance
effort in organizations that have a comprehensive development methodology and those
that don't.
Rejected, those organizations having a comprehensive development methodology use
significantly less effort on functional maintenance.

• H3: There is no statistically significant difference between the size of the organizations
that have a comprehensive development methodology and those that don't.
Rejected, those organizations having a comprehensive development methodology were
significantly larger in most respects.

• H4: There is no statistically significant difference between the maintenance effort in
organizations that use CASE-tools in development and maintenance and those that don't.
Not rejected.

• H5: There is no statistically significant difference between the functional maintenance
effort in organizations that use CASE-tools in development and maintenance and those
that don't.
Not rejected.

180

www.manaraa.com

USE OF METHODS AND CASE-TOOLS IN NORWAY 365

• H6: There is no statistically significant difference between the size of the organizations
that use CASE-tools in development and maintenance and those that don't.
Rejected, those organizations using CASE-tools were significantly larger in all respects.

• H7: There is no statistically significant difference between the size of organizations
when it comes to how they develop their major systems (customized or packaged devel
opment).
Rejected: Organizations with large data departments and many end-users have a larger
percentage of systems developed by the data department and a smaller percentage of
application systems developed by outside companies. Organizations with small data
departments and few end-users use a larger percentage of packages with small adjust
ments.

• H8: There is no statistically significant difference in the perception of the benefits of
CASE between users and non-users of CASE-tools.
Not rejected, even if certain interesting differences which should be further investigated
can be observed.

• H9: The institutionalization of organizational controls do not influence the behavior
during maintenance significantly.
Rejected in the general case. With some exceptions, there is a clear connection between
the instituted organizational control and how maintenance and change request handling
is performed.

It appears that larger organizations with larger data departments have a more widespread
use of a comprehensive development methodology. It is also primarily those organizations
who have started to apply CASE-tools, and they also perform better when it comes to func
tional maintenance. Thus even if one would expect that smaller organizations could get
their work done efficiently using a more loosely formalized development and maintenance
methodology, this appears not to be so. On the other hand, having a complete development
method does not appear to influence the amount of traditional maintenance significantly.
This is in step with the results of Dekleva (1992b) which showed that there is no conclusive
evidence that organizations using modern development methods use less time on mainte
nance activities. On the other hand they spend a larger proportion of the time on functional
perfective maintenance, which, other things being equal, decreases the amount of functional
maintenance.

When it comes to general conclusion regarding CASE-use, the small number of our re
spondents applying CASE-tools should make us very cautious in coming with any strong
statements on the overall use of CASE-tools in Norway. This was neither the main motiva
tion behind the investigation. Comparing with other investigations though, it seems that the
application of CASE-tools in Norway might be less widespread than what is reported from
other European countries such as the Netherlands and UK (Hardy et aI., 1995; Kusters and
Wijers, 1993).

Acknowledgments

This article is an extended version of (Krogstie, 1995c) and we would like to thank the
reviewers of the article for their inputs and comments. We would also like to thank all the

181

www.manaraa.com

366 KROGSTIE

participants of the survey-investigation for their effort in filling out the forms and everyone
helping us in the refinement of the questionnaire. Arne Henne deserves to be mentioned
for providing the forms of his survey. Arne S!2!lvberg initiated the investigation and has
supported the work both spiritually and financially.

References

Arnold, R.S. and Parker, D.A. 1982. The dimensions of healthy maintenance. In Proceedings of the 6th Interna
tional Conference on Software Engineering (ICSE), IEEE Computer Society Press, pp. 10-17.

Bergersen, L. 1990. Prosjektadministrasjon i Systemutvikling. Aktiviteter i Planlegningsfasen Som Pavirker Suk
sess. (In Norwegian), Ph.D. Thesis, ORAL, NTH, Trondheim, Norway.

Central Bureau of Statistics of Norway. 1992. Statistical Yearbook of Norway. Statistisk sentralbyni, Oslo, Norway.
Dekleva, S.M. 1992a. Delphi study of software maintenance problems. In Proceedings of the Conference on

Software Maintenance (CSM'92), pp. 10-17.
Dekleva, S.M. I 992b. The influence of the information systems development approach on maintenance. MIS

Quarterly, pp. 355-372.
Dekleva, S.M. 1992c. Software maintenance: 1990 status. Journal of Software Maintenance, 4:233-247.
Hardy, C., Stobart, S., Thompson, B., and Edwards, H. 1995. A comparison of the results of two surveys on

software development and the role of CASE in the UK. In Proceedings of the Seventh International Workshop
on Computer-Aided Software Engineering (CASE'95), H.A. Miiller and RJ. Norman (Eds.), IEEE Computer
Society Press, Toronto, Canada, pp. 234-238.

Henne, A. 1992. Information systems maintenance-Problems or opportunities? In Proceedings ofNorsk Infor-
matikk Konferanse 1992 (NIK'92), Troms¢, Norway, pp. 91-104.

Hewett, J. and Durham, T. 1989. CASE: The next steps. Technical report, OVUM.
House, C. 1993. Case studies in the CASE industry. Keynote Speech CASE'93.
Krogstie, J. 1994a. Information systems development and maintenance in Norway: A survey investigation.

Norsk Konferanse for Organisasjoners Bruk av Informasjonsteknologi (NOKOBIT'94), Bergen, Norway,
pp.I-22.

Krogstie, 1. I 994b. Survey investigation: Development and maintenance of information systems in Norway.
Technical Report 0802-6394 6/94, IDT, NTH, Trondheim, Norway.

Krogstie, J. 1995a. Conceptual Modeling for Computerized Information Systems Support in Organizations. Ph.D.
Thesis, IDT, NTH, Trondheim, Norway.

Krogstie, J. 1995b. On the distinction between functional development and functional maintenance. To be published
in Journal of Sl!ftware Maintenance.

Krogstie, 1. 1995c. Use of development methodology and CASE-tools in Norway: Results from a survey. In
Proceedings of the Seventh International Workshop on Computer-Aided Software Engineering (CASE'95),
H.A. Miiller and RJ. Norman (Eds.), Toronto, Canada, pp. 239-248.

Krogstie, J. and S¢lvberg, A. 1994. Software maintenance in Norway: A survey investigation. In Proceedings
of International Conference of Software Maintenance (ICSM'94), H.A. Miiller and M. Georges (Eds.), IEEE
Computer Society Press, pp. 304-313. Received "Best Paper Award".

Kusters, RJ. and Wijers, G.M. 1993. On the practical use of CASE-tools. Results of a Survey, in Lee, Reid, and
Jarzabek (1993), pp. 2-10.

Lee, H.Y., Reid, T., and Jarzabek, S. (Eds.) 1993. In Proceedings of the 6th International Workshop on Computer-
Aided Software Engineering (CASE'93), IEEE Computer Society Press, Singapore.

Lientz, B.P. and Swanson, E.B. 1980. Software Maintenance Management. Addison Wesley.
Norusis, MJ. 1992. SPSSfor Windows: Base System User's Guide. Chicago, Illinois, USA: SPSS Inc.
Norusis, MJ. 1993. SPSSfor Windows: Professional Statistics. Chicago, Illinois, USA: SPSS Inc.
Nosek, J.T. and Palvia, P. 1990. Software maintenance management: Changes in the last decade. Journal of

Sliftware Maintenance 2:157-174.
Parkinson, J. 1990. Making CASE work. In CASE on Trial, K. Spurr and P. Layzell (Eds.), John Wiley & Sons,

pp.213-242.

182

www.manaraa.com

USE OF METHODS AND CASE-TOOLS IN NORWAY 367

Stobart, S.C., Thompson, J.B., and Smith, P. 1991. Use, problems, benefits, and future direction of computer-aided
software engineering in the United Kingdom. Information and Software Technology, 33(9):629-636.

Stobart, S.C., van Reeken, AJ., Low, O.C., Trienekens, lJ.M., Jenkins, J.O., Thompson, J.B., and Jeffery, D.R.
1993. An empirical evaluation of the use of CASE tools. In Lee et al. (1993), pp. 81-87.

Swanson, E.B. and Beath, C.M. 1989. Maintaining Information Systems in Organizations. Wiley Series in Infor
mation Systems, John Wiley & Sons.

van Swede, V. and van Vliet, H. 1994. Consistent development: Results of a first empirical study of the rela
tion between project scenario and success. In Proceedings of the 6th International Conference on Advanced
Information Systems Engineering (CAiSE'94), O. Wijers, S. Brinkkemper, and T. Wasserman (Eds.), Springer
Verlag, Utrecth, Netherlands, pp. 80-93.

Wijers, O.M. and van Dort, H.E. 1990. Experience with the use of CASE-tools in the Netherlands. In Proceedings
of the Second Nordic Conference on Advanced Information Systems Engineering (CAiSE'90), B. Steinholtz
et al. (Eds.), Lecture Notes in Computer Science, Springer-Verlag, Stockholm, Sweden, 436:5-20.

183

www.manaraa.com

Automated Software Engineering 3, 369-390 (1996)
© 1996 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Debugging and Testing Tool for Supporting
Software Evolution

D. ABRAMSON davida@cit.gu.edu.au
R. sosle sosic@cit.gu.edu.au
School of Computing and Information Technology, Griffith University, Kessels Rd, Brisbane, Queensland, 4111

Abstract. This paper describes a tool for debugging programs which develop faults after they have been modified
or are ported to other computer systems. The tool enhances the traditional debugging approach by automating
the comparison of data structures between two running programs. Using this technique, it is possible to use early
versions of a program which are known to operate correctly to generate values for comparison with the new program
under development. The tool allows the reference code and the program being developed to execute on different
computer systems by using open distributed systems techniques. A data visualisation facility allows the user to
view the differences in data structures. By using the data flow of the code, it is possible to locate faulty sections
of code rapidly. An evaluation is performed by using three case studies to illustrate the power of the technique.

Keywords: automatic software testing, debugging, testing, evolutionary software

1. Introduction

The high cost of software development, in combination with advances in software engineer
ing, has caused the emergence of a software development methodology based on evolution.
In this methodology, new programs are built from existing ones, utilising sections of code
from old programs to perform functions in the new application. The methodology is most
commonly applied when the functionality of a program is expanded incrementally, or when
code is ported from one system to another. In the latter case, the old code is moved to a
new platform with as little modification as possible. However, this simple minded approach
often fails. For example, it may be necessary to modify sections of code which are sys
tem dependent, and in some circumstances it may even be necessary to rewrite the entire
program in another programming language. Further, subtle differences in the semantics of
programming languages and operating systems mean that the code may behave differently
on two systems. Because ofthese practical considerations, it is desirable that software tools
are available to simplify the process as much as possible.

Traditional debuggers such as dbx (Adams and Muchnick, 1986; Linton, 1990; Sun
Microsystems, 1990) and gdb (Stallman), and others (Moher, 1988; Olsson, 1991; Ramsey,
1992; Satterhwaite, 1972; Cheng and Hood, 1994) do not emphasise the debugging and
testing of applications which change during their development cycle. Debuggers of this
type allow the user to manipulate the new program through process control commands, and
to examine and modify the state of the program. In debugging the program, the user must
determine possible modes of failure, and then stop the execution at key points to examine
the state. In determining whether the state is correct or not, the user must be able to predict

www.manaraa.com

370 ABRAMSON AND SOSIC

the state values. The prediction is usually based on a detailed knowledge of the operation
of the code. This can be extremely difficult for complex code, especially if the person
performing the debugging is not the author of the original program. Most importantly,
existing debuggers do not try and make use of any other versions of the program in helping
the user form sensible predictions for state values.

In this paper we discuss a new debugging tool which can be used to test programs which
change over time Our tool incorporates conventional debugger commands as well as a new
set of commands which facilitate comparison of the new program with an existing version.
The paper begins with a discussion of the current techniques used to test evolutionary pro
grams. It then describes GUARD) (Griffith University Relative Debugger), a new debugger
developed at Griffith University, followed by some implementation considerations. Finally,
we provide an evaluation of the technique using a number of case studies which highlight
different aspects of GUARD.

2. How do we test and debug evolving programs?

Figure 1 shows a number of classifications for changes that a program may encounter
during its lifetime. It often begins as a small program for testing some basic functionality
and design. It may be augmented and incrementally expanded into a large software system,
and some of the core algorithms may even be altered. These types of modifications can be
attributed to changes in the functionality or operation of the code. In figure 1 changes which
alter the core algorithms or augment the program with new ideas are classified as functional
changes. The program may be converted for execution on different hardware and software
platforms, and may even be re-written in another language to allow it to take advantage of
new hardware. These types of modification can be classified as migratory ones. In figure 1
changes attributed to rewriting the program in another language or porting it to another
computer system are classified as migratory. Regardless of the cause of the changes, at
each of these stages the programmer must determine whether the program is still operating
correctly, and if not, must determine which of the alterations caused the new behaviour.

Migration

ne\
hardware

system

Figure J. Classification of program changes.

186

Augmented
Program
with new
idea

www.manaraa.com

A DEBUGGING AND JESTING IDOL 371

STEP 1 SfEP2 STEP 3 STEP4

Figure 2. Refining the erroneous region.

Currently, there are very few tools which assist porting and debugging of evolving pro
grams across different hardware and software platforms. Traditional debuggers have a
number of severe limitations which significantly reduce their applicability. The most se
rious limitation is that they are incapable of dealing with several programs running at the
same time and possibly on different computers. They have no facilities for comparing the
output and internal state of different programs, which must be done by tedious and error
prone manual methods.

The most common technique for testing and debugging evolved programs is to use the data
flow of the code to locate the point at which the data structures in the new program diverge
from those in the existing one. Thus, the existing code acts as a reference version by defining
a set of expectations. In this way, the user typically works back to determine the last point at
which the data was correct by comparing data structures with the reference version. The pro
cess is applied iteratively until the faulty region is refined to a small segment of the program.
Once this point has been established, most errors can be traced quickly to a small section of
faulty code, and the error can be corrected. This technique is illustrated in figure 2, which
shows that relatively few stages can be used to refine the faulty region to a manageable size.

Debugging real programs using this technique with currently available tools can be
tedious and error prone. Typically, output statements are placed in both the reference and
the debugged code, and the values are either compared by visual inspection, or by a file
comparison program (Galbreath et aI., 1994). If the two programs execute on different
computer systems then the data must be transferred before it can be compared.

These shortcomings have motivated the development of a new debugging tool, which is
described in the next section.

3. GUARD: A relative debugger

3.1. What is GUARD?

GUARD is a distributed debugger which operates in an open heterogenous computing envi
ronment (Abramson and Sosic, 1995; Sosic and Abramson). GUARD provides the user with
functionality to control more than one program and to make assertions about the correctness
of a new program with reference to an existing one. Consequently, GUARD supports the
evolution of programs because it acknowledges the existence of working versions of the

187

www.manaraa.com

372 ABRAMSON AND SOSIC

Mac:binel

Rc(cn:acc
PIopn

Figure 3. GUARD-A relative debugger.

code. Figure 3 shows the way that GUARD interacts with both the reference code and the
code being debugged.

Because GUARD works in a distributed environment, it is possible to execute the ref
erence code, the program being debugged and GUARD itself on three different computer
systems, as shown in figure 3. GUARD communicates with the programs it is controlling
via a network and makes use of a special debugger support library [called Dynascope (Sosic,
1995)] which interacts with the applications.

GUARD relies on the premise that differences between the contents of the data structures
in the reference code and the one being debugged can be used to detect faults. This assumes
that the two programs utilise comparable data structures, or at least provide a set of conver
sion routines which make them appear equivalent. GUARD makes no assumptions about
control flow in the two programs, which may be different. It requires the user to determine
key points in the two programs at which various data structures should be equivalent. The
overall debugging process is as follows. The user determines that the new code is erroneous
by observing that key data structures are incorrect after execution. GUARD is then used
to test equivalence of these data structures between the reference and debugged programs
at various points in the code. By tracing the data structures back to their sources using
the dataflow of the program, it is possible to find the latest point at which the two codes
are equivalent and the earliest point at which they diverge. The error then lies between
these two points. This overall technique is used routinely in many disciplines, such as
debugging electronic circuits. In electronics, test equipment is used to compare observed
signals with those recorded on working equipment. When applied to debugging computer
programs, the process is normally performed manually using very little computer support
and it is usually quite laborious. The main power of GUARD is that it provides the facilities
to make the process very simple and efficient. It is effective because the user can use a
divide-and-conquer technique on very large systems and reduce the suspect section of code
to a manageable size.

GUARD complements conventional debuggers, rather than replacing them. By allowing
the user to determine quickly whether two programs compute the same values it is possible
to find out where the two codes diverge. Once the point of divergence has been located,

188

www.manaraa.com

A DEBUGGING AND 'JESTING TOOL 373

conventional debugging techniques can be used to isolate the faulty code. For this reason,
the core GUARD functionality may be embedded in a conventional debugger.

The availability of other supporting tools can dramatically improve the effectiveness of
this overall technique. For example, if the data flow of the code is available during the
debug and test phase, then this can be used to assist the user in determining where to
test the new code against the reference. Consequently, GUARD could be embedded in a
CASE environment which gives concurrent access to the source, various call tree graphs
and dataflow representations of the program.

3.~. Network independent debugging

GUARD makes use of open distributed processing techniques to allow the reference code
and the debugged code to execute concurrently on different computer systems. This means
that when a program is being ported to another system, the reference code operates in an
environment which is known to produce the correct results. Consequently, the user is able to
concentrate on the causes of deviation of the code to be debugged. Network independence
and support for heterogenous computing platforms make heavy demands on the underlying
technology, and some of these issues will be discussed in Section 4.

Network location information is restricted to the GUARD command invoke, which
starts executing a process. In this command a logical name is bound to the process for
use in future commands. After the invoke command has been issued, all other GUARD
commands use the logical name when referring to the process. GUARD hides the details
of the underlying architecture from the user, and thus it is possible to compare data struc
ture contents across widely different machines. For example, one machine may represent
integers using 64 bit big endian addressed words, and the other may use 32 bit little endian
addressed words. GUARD automatically translates the external data into a generic internal
form before it performs the comparison. We have tested GUARD across a wide range of
Unix platforms using the Internet as the underlying network. This feature of GUARD will
be illustrated by one of the case studies reported in this paper.

3.3. Using GUARD

GUARD relies on the user to make a number of assertions which compare data structures
in the code to be debugged and the reference version. The'Seassertions make it possible to
detect faulty code because they indicate where (and when) the data, structures deviate from
those in the reference code.

The choice of data structures and test points must be determined by the user based on
some knowledge of the application. It is not necessary to test all data structures, but only
those which will help uncover the source of the error. Likewise, it is not necessary to test
the structures after each executable statement. A search which refines the faulty region,
such as a binary search, can be very effective.

GUARD can be used in two modes: one in which the assertions are specified declar
atively, and the other using procedural techniques. Both techniques do not require any
recompilation of the code and make use of debugger breakpoints to interrupt the code

189

www.manaraa.com

374 ABRAMSON AND SOSIC

being tested. The procedural scheme relies on the user manually placing breakpoints in
both the reference code and the debugged code. These are planted by the user at key test
points. Both programs are then executed until they reach these breakpoints, after which
the user tests the equality of arbitrary data structures using a compare statement. The
following example shows the syntax of the compare statement by comparing the values
of variable test in the reference code and the debu'g code. In this example, reference and
debug are names which are bound to the two processes under examination by the invoke
command.

compare reference::test = debug::test

If the two data structures are not equivalent, then the nature of the error is reported.
If the variables are simple types like integer or real, then it is possible to report the two
values. If they are compound structures like arrays, then the location of the difference in
the two structures must be reported as well. Later in the paper we will describe the method
for reporting differences in array structures. After the comparison, the user can resume
execution of the two programs using a continue statement. It is possible to compare a
number of data structures after the breakpoints have been reached. New breakpoints can
also be set to further refine the erroneous code at any stage of the debugging process. This
process closely resembles the way a conventional debugger is used. However, it allows
the user to control two processes concurrently and compare their data structures. This
manual scheme can become unwieldy on large programs because there are two processes
to control. Further, it is not well-suited to using the debugger to automatically test whether
a new version of program matches a previous one, because it requires a great deal of
user interaction. Consequently, we have developed an automatic mode of operation called
declarative assertions.

Declarative assertions allow the user to bind a set of breakpoints to comparison operations
at any time prior to, or during, execution of the code. In this way, the comparisons are
invoked automatically each time the breakpoints are reached. If the compare statements
do not detect an error, then the code is automatically resumed without any user interaction.
Declarative assertions provide a convenient mechanism for stating a set of conditions for
correct execution, and thus are well suited for automatically testing a new program against
previous versions. If the assertions do not cause any errors, then the code is assumed to
conform to previous versions. Declarative assertions are also effective when an error is
detected only after a number of iterations of a particular statement. Because the user is not
involved until an error is detected, little user interaction is required to actually detect the
erroneous lines. The following syntax is used to declare an assertion:

assert reference::variablel@linel = debug::variable2@line2

where reference and debug are bound to the two processes as discussed previously,
variablel and variable2 are arbitrary variables in the programs, and linel and
"line2 are source code line numbers. In Section 5 we will illustrate the use of declarative
assertions for detecting errors in a large scientific modelling program.

190

www.manaraa.com

A DEBUGGING AND 1ESTING lOOL 375

3.4. Data types

Like conventional debuggers, GUARD needs to understand the types of variables in the
programs it controls. On many systems (e.g., Unix) the type information is embedded in
special symbol table information stored in the executable image. This can be automatically
extracted by the debugger at the beginning of a debug session. In a conventional debugger,
this information allows it to display variables in a way which is meaningful to the pro
grammer. In GUARD, the information is also required so that it knows how to compare
variables. For example, variables must be type compatible before they can be compared.
Further, GUARD needs to understand the structure of the variables during the comparison
operation so that it can traverse the basic elements. Other complications arise because
the reference code may execute on a system with different attributes from the code being
tested. For example, byte ordering may differ and the two programs may even be writ
ten in different languages. Consequently, GUARD must map types from one system onto
another.

GUARD currently handles variables of base types integer, real, character and multi
dimensional arrays of these base types. The base types are compared for equality. Arrays are
compared by traversing their elements in order. Differences are reported together with their
position information. This allows GUARD to compare arrays in programming languages
which use different ordering, such as Fortran and C. GUARD allows also comparisons of
sub-arrays.

These base types have been sufficient to demonstrate the effectiveness of GUARD in
debugging a number of large scientific programs. In future versions of GUARD we will
add support for data types such as records and dynamic structures like linked lists. Records
can be handled by walking through the elements of the record recursively until a base
type is found. Linked lists require more sophisticated procedures for mapping the data
structures into an intermediate form prior to comparison and for interpretation of this inter
mediate form. It would also be possible to compare user defined types in an object oriented
environment by allowing GUARD to call the object access methods of the appropriate class.

3.5. Tolerances

A program may not be in error simply because its variables do not exactly match those of a
reference version. The most obvious example is when the two systems use different floating
point representations or libraries. In this case numbers may be deemed to be equivalent
if they are within a predefined tolerance of each other. Accordingly, GUARD includes a
user controlled tolerance value, below which numbers are considered equivalent. Further,
individual assertions may specify their own tolerance value rather than using the global one.

We have experimented with two different types of tolerance, one absolute and the other
relative. When absolute tolerances are used, the magnitude of the difference between the ref
erence and the test variables is compared to the tolerance value. When relative tolerances are
used, the difference is divided by the larger of the two variables. The latter is required when
the numbers are quite small, because even a small absolute difference may constitute a large
variation. User interaction is required in order to determine which type of tolerance to use.

191

www.manaraa.com

376 ABRAMSON AND SOSIC

3.6. Displaying the results

If two scalar variables differ then it is possible to display the two values and report the
difference. However, when complex data structures differ, it is difficult to interpret the
nature of the difference by viewing the numeric values alone, particularly if they are floating
point numbers. Consequently, we have developed a simple visualisation system for GUARD
which uses a pixel map to show array differences. GUARD also reports the maximum and
average differences between arrays as numeric values.

The most intuitive display is formed when two dimensional arrays are visualised. In
this case, a two dimensional pixel map is created in which each pixel corresponds to one
array element. Errors which are caused by incorrect loop bounds and strides are displayed
as regular patterns, making them easy to detect. GUARD currently maps all other shaped
arrays onto two dimensional ones by either expanding the one dimensional arrays or merging
higher dimensions.

Figures 4(a) and 4(b) show some sample visualisations which were produced by GUARD
when it was used for testing a new version of the Shallow Water Equations (Abramson, Dix,
and Whiting, 1991). The original code was written in FORTRAN and the new version was
written in C and ran on a different computer system. Figure 4a shows the effect of floating
point differences between the two dimensional data structures used to hold the pressure of
the wave. In both visualisations, a black pixel means that the data is different at the specified
row and column of the arrays. From figure 4a it can be seen that the two data structures are
similar but not exactly the same because many of the values are incorrect, but the maximum
difference is quite small (4.3 x 10-06). Moreover, the maximum difference increases in
time as the two programs diverge further. Figure 4b shows the effect of a wrong loop bound
in the new code. The section of the array which has not been calculated can be clearly seen
as a band of black pixels covering the missing columns on the right.

In figure 5(a) we illustrate a more powerful visualisation of differences. In this case,
we show a three dimensional error iso-surface of a particular data structure. The example
comes from the comparison of two different weather models, and the displays show an
error iso-surface where the error exceeds 0.1 % between the temperature variable in the two
models (Abramson et ai., 1995). Such images convey powerful debugging information to the
programmer. For example, by rotating this image in three dimensions it is possible to note
that some of the differences are present in the upper layers of the atmosphere, and some are
present in the lower levels. This helps to isolate the sections of code which could be causing
the divergence, because different pieces of code are responsible for some of the processes
which occur in the upper and lower levels of the atmosphere. Also, since there is significant
structure to the error surface, it is unlikely to be caused by simple floating point divergence
through rounding differences. In this example, there were multiple separable differences,
and these are superimposed on the one image. The image in figure 5(b) shows the result of
removing one source of errors, as identified using GUARD. It is notable that some errors
are still present in the second image. These images were produced using a commercial
visualisation package (IBM's Data Explorer). The data is extracted by providing a file
name to the assert command, and the data is dumped to the file each time the assertion
exceeds the tolerance. A subsequent program processes the data file and imports the data
into the visualisation system.

192

www.manaraa.com

A DEBUGGING AND lESTING TOOL

: (0 3)
.4335937500

: (0 4) (0 4) = (01 ff •
• 3710937500
.2Qj~l~ (06) = (DHf · r. -'llirr~~~.;!fIo~~""IS.~Ir~~¥..

: (0 7) (0 7) = CDiff •
. 1054687500

Indo" : (0 10) (0 10) =
50002 • 7304687500
Indo : (0 12) (0 12) =
50002 .4257812500
Indo : (014) (0
50002.0820312500
Indo>< : (0 16) (0 16) =
50001 .7070312500
Indo : (0 23) (0 23) =
5OOOO.22265G2500

.,~Dl$PII"""rc bi "" of c""",,rlson

KaXlJlU!ll d.l.rrenrce betM@eI1 value.s : 0
Tow cI1rr01"'el"Ce Detwoen vellAI': 0

Values .re t.h! _.@ WltJun t!pS.llan.
IIXKVt.lCrl of pt"OCeSses

Index : (0 91) (091> = (Dlff . V.!vo I
50000 .0000000000
I nde>< : < 092) (092) = (Dlfr. V.!uo
50000 .0000000000
lncle>c : (0 !)3) (0 93) • Ullfr. Vol ..
50000 .0000000000
Indo><: (0'-"') (0'-"'). (Dlrr . Volue
50000 .0000000000
Inde>< : (0 95) (0 95) = (Dlrr. V.lue
50000 .0000000000
Indo>< : (0 %> (0 %) • (Dlrr. Volue
50000 .0000000000
1_ : (0 97> (0 97) = (D,ff . Volvo
50000 .0000000000
Index : (0 ')8) (091) = (D,rr. V.!ue
50000 .0000000000
Index : (0 99) (0 99) = (D,rr. Volue
50000 .0000000000

(a)

(b)

Figure 4. (a) Numeric instability causing errors. (b) Incorrect loop bound.

377

193

www.manaraa.com

378

~ Ol
o~

or
<5'0

So
'!to

.so
<?o

lO

o

Figure 5. (a) Visualisation of differences. (b) Removal of one source of error.

3.7. Partial assertions

ABRAMSON AND SOSIC

Assertions contain the names of data structures to compare and the line numbers in the
sources where they should be equivalent. In order to create assertions the user must consult
the code to determine the correct line numbers. This approach can be error prone when the
source changes frequently, because the line numbers also change. Accordingly, we have
implemented an additional way of specifying assertions which does not require the user to
enter line numbers. In this case, the user writes a partial assertion for each of the programs,
naming the data structure and an assertion name, and then embeds these in the source files
as comments. Partial assertions are extracted from the programs automatically, using a
filter program which constructs a file containing assertion names with their corresponding
data structure names and line numbers.

GUARD has a special command called build, which takes two files with partial asser
tions and builds a set of complete assertions. If the assertion name appears in both lists then
it is matched to form a complete assertion, containing two sets of data structures and associ
ated line numbers. The user is also free to add any additional assertions using the assert
command. Figure 6 shows how a partial assertion list can be generated. The assertions
appear as comments in the code, and thus the program does not need to be recompiled in
order to run the program without using the debugger. The partial assertion list contains the
name of each assertion and its corresponding variable and line number information. The
partial lists are then merged by GUARD into a set of complete assertions.

3.B. Trace files

The discussion to date has assumed that the user wishes to execute both the reference code
and the program being tested each time the assertions are to be evaluated. However, this

194

www.manaraa.com

A DEBUGGING AND lESTING moL

doIOOFI,1I
do lOOi"'l,rn
cu(il'lj)= O.S-(J(i'l-I,j)+p(i,j))*'u(i+',j)
cv(iJtl)" O.S+(p(ij'f"I)t"p(ijWv(ij+l)
l(i ... I,j+I) '" (flllx·(v(i+IJ+I)-'o' (iJ+I»-fsdy+(Y(i'tlj+1)

I -lI(i+IJJVfplij}+p(i+lj>+p(H'I,,+I)t-p(ij+I)1
h(ij)"'P(ij)+O.2'~lI(j+lj)·\I(i"'ljj+l;l(iJ)·\I{iJJ

I +Y(i,j"'"Il"'I(ij+l~v(ij)·Y(ij)}

lretOt '" kelo!'" p(lJl'" 0.25+(u(i+ ljl*'u(i·'j}+l.l(i,Wu(ij)
I +y(i,j-HrvliJ+l)+v(ij)"'v(ij})

cSllll_ldedl.....J*t,..
ptol"pIOI+(p(ij)-pmclII)U2
CIOI"'Crot+iI(i,j)
(1I1t0i • ClUto! ... z(i+ I~'+ nU 2 ·0.25·

I (P(i';)+p(i+l.j}t-p(i+lj+I)+p(iJ+I))
IOOlXllllilll,lC

cS. ... tdlcck..c.ftII
cSuln1 dlnkJY c¥

Source for Reference Code

Figure 6. Generation of assertions from source code.

379

c:bfCiL ptM@rMal f.11
cbedlJII CII@lfllul I!17
clltckoft C'I~ nl

Pre-processor

Partial assertions

is not always convenient. First, the reference program may be executed on a much slower
system than the new version, thus evaluating the assertions may take a long time. For
example, the new program may be run on a supercomputer. Second, it may not be possible
to run the reference code on the original hardware platform, because it may no longer be
available. These problems can be solved by storing sufficient information when assertions
are first evaluated, so they can be re-executed without running both the application programs.
Instead, it is only necessary to re-run the program under test. This technique effectively
caches the contents of the data structures for later re-use.

GUARD implements this caching mechanism through a process called ghost execution.
Ghost execution is performed in two phases. First, the reference code is executed without
the new code together with all the necessary assertions. In this phase, the contents of
variables being traced are dumped 10 a file. During the second phase, this file is used as
the source of variable values rather that a real reference program being executed. After the
user requests ghost execution the debugging can proceed as though the reference code were
actually being executed. Providing the user does not specify any assertions which contain
variables that have not been cached, the reference code does not been to be re-executed.

3.9. Data extraction and permutation

The discussion to date has assumed that the data structures being compared in the reference
and debugged code are identical. Often when code is ported from one system to another
there are subtle changes in the data which make this assumption unrealistic. In the case of
arrays, it is often necessary to alter the dimensions in the new code to implement additional
functionality, or to alter the order of the indexes. Accordingly, GUARD implements array
extraction operators and index permutation functions which make it possible to map one
array structure to another.

Array extraction is performed using rectangular sub arrays. For example, the description
A[5 .. 19][5 .. 19] describes a 15 x 15 sub-array of A starting at row 5 and column 5. This
sub-array can be compared with another sub-array providing the sizes are conformant. For
example, the following assertion is possible:

Assert p1: :A[5 .. 19] [5 .. 19]@C.c:ll = P2: :B[4 .. 18] [6 .. 20]@F.f:15

195

www.manaraa.com

380 ABRAMSON AND SOSIC

Further, changes in index order mean that the new array may be equivalent except that
it has a different shape. This permutation is often performed to optimise a program for a
new architecture in which the use of vector hardware or cache memory dictates that certain
indexes be scanned as inner loops. Accordingly, GUARD implements an arbitrary permute
function on every assertion, which makes it possible to map index values from one array
to another. The following example compares array A with array B using a permutation
function which maps index 0 of array A onto index 1 of array B, and index 1 of array A
onto index 0 of array B.

Assert p1::A@C.c:11 = P2::B@C.c:15/permute (0:1,1:0)

Both of these types of assertion were used in comparing the two weather models discussed
the third case study in Section 5.3. The new model contained extra rows and columns to
allow for interprocessor communication in a parallel form of the program, however, the
core data was the same. Also, its row and column ordering was optimised to improve the
cache performance.

3.10. Forcing equivalence

Each time an assertion detects a difference in the data between the two programs it reports
the divergence to the user and restarts the processes. An option to the assert command
instructs GUARD to also copy the data from the reference code data structure into the
one in the program being tested, thereby forcing them to contain the same information.
This feature has enormous benefits when the user is trying to determine whether the error
which has been detected is responsible for some other divergence later in the execution.
In one of the case studies in this paper we illustrate the power of the force option when
small errors accumulate into larger significant ones after the program has run for some
time.

4. Implementation issues

The functionality discussed in the previous sections raises many implementation issues. In
this section we briefly touch on some of these, but a more complete discussion is found in
(Sosic and Abramson; Abramson, Sosic, and Watson).

4.1. Debugger structure

GUARD is built as a user client which attaches itself to a number of debugger servers. The
user client contains all of the user interface code together with the code to manage multiple
processes and handle assertions. The client/server structure makes it possible to run the
user interface and control logic on one processor and the reference and debugged code on
different systems. GUARD is isolated from the implementation details of debug servers by
a novel debug library called Dynascope (Sosic, 1995). Dynascope provides functionality

196

www.manaraa.com

A DEBUGGING AND 1ESTING mOL 381

which makes it possible to control programs through breakpoints, and to allow extraction
of data from variables. A generic interface is provided regardless of the target platform,
thus GUARD is portable to the platforms which are supported by Dynascope. Dynascope is
currently available on SUN Sparcstations, Next, DEC Alpha, SGI Indy, and IBM RS6000
machines.

4.2. Assertions, event firing and control

Assertions make use of the breakpoint capability which is inherent in most debuggers.
However, the logic is more complex than for simple breakpoint handling. When assertions
are processed by GUARD, the information relating to the data structure and breakpoint
information is stored in an assertion structure. This includes an exact description of the
process identifiers, data structures to be compared and the breakpoint addresses.

Subsequently, breakpoints are placed in the two programs at the appropriate places. Then
the programs are executed and GUARD waits for breakpoints to be reported. Each time
a breakpoint is encountered, the appropriate data structure is extracted from the program
and stored in temporary debugger variables, and the program restarted. When both data
structures in an assertion are available, the comparison can be performed. This simple
event management technique allows the programs to encounter the breakpoints in any
order. GUARD performs the comparison only when both breakpoints for an assertion are
encountered. If a process encounters another breakpoint at the same address before the
previously stored data has been compared, then the data is held in afirst-in-first-out queue.
This preserves the temporal ordering of the data.

Allowing each program to continue execution immediately means that the programs can
follow different control structures, at the cost of more complex resource management within
the debugger. Data must be retrieved from the user program and saved until it is required,
and sufficient space must be available for multiple data structures. At present, we impose
a limit on the number of outstanding items for every assertion. If the limit is exceeded
the application program is blocked until the assertions are evaluated. Providing the other
process encounters a breakpoint in the meantime, the assertion will execute and the two
processes can be restarted. However, it is possible to dead-lock a process by limiting the
number of items too severely given a particular set of assertions. In our experience, this has
not proved to be a limitation2•

4.3. Issues in heterogeneous distributed computing

Heterogeneous computing platforms pose some interesting challenges for a relative debug
ger, which must possess the following characteristics:

• The debugger must support the execution of more than one program concurrently;
• The debugger must inter-operate with different platforms;
• The debugger must perform all the necessary data type conversions between platforms

and language environments in order to perform meaningful comparisons.

197

www.manaraa.com

382 ABRAMSON AND SOSIC

As discussed previously, GUARD uses a debug server, called Dynascope (Sosic, 1995;
Sosic, 1995), which hides most of the issues related to the exact process for starting and
running programs on distributed platforms. The invoke command contains sufficient in
formation to inform Dynascope of the process location, after which there is no need to
re-issue this information. Dynascope uses remote execution commands to start remote de
bug servers, and data is transported using Unix sockets (Stevens, 1990). Dynascope also
contains mechanisms to manage heterogenous representations of the same data, including
differences in byte ordering, character sets, data sizes and floating point representations.
Data from remote systems is mapped into a generic representation before it is returned to the
debugger. In this way it is possible to compare data between widely different architectures,
and this information can be hidden from the debugger itself. More details of Dynascope
can be found in (Sosic, 1995).

5. Evaluation

In this section we evaluate GUARD by considering three case studies, involving real world
applications of the technology. Each case highlights a different aspect of relative debugging.
In the first case study, GUARD is used to track a difference in a scientific modelling code
which occurred as a result of software maintenance. In this case the error is traced to
one erroneous source statement in the new version of the code. In the second case study
GUARD is used to determine why the same source program behaves differently on two
different computer systems. In this example the error is isolated to different behaviour of
a mathematical library function. In the final case study, GUARD is used to compare the
execution of two different models which should compute the same results. In this case one of
the models is a version which has been modified for parallel execution, and is substantially
different from the sequential version. In this case, GUARD helps isolate two independent
differences in the two models.

5.1. Case study 1-Finding a source error

In this section we describe an application of GUARD for finding a subtle error in a scientific
code. The program, a photo chemical pollution code, models the chemical processes which
occur during smog formation (McRae et aI., 1992). It has been used as part of a number of
real world studies involved with formulating pollution control strategies. This software has
characteristics which are typical of many other scientific modelling programs. It is written
in Fortran and spans 15,000 lines of code over 15 source modules.

One of the key data structures in the program is an array, named C, which holds the
concentrations of all chemical species for each of the cells in three dimensional space. The
array is conceptually indexed by two co-ordinate indices (column number in 2D space and
vertical level) and a chemical species number. Whilst this would normally require a three
dimensional array, it is actually represented as a one dimensional array. This assists with
the vectorisation of the program, and also with dynamic memory allocation. However, it
also makes the code harder to understand and debug.

198

www.manaraa.com

A DEBUGGING AND 'JESTING TOOL 383

In this study we show how GUARD was used to track an error in the numeric integration
code. The problem was detected after the program failed to generate correct results for
a particular simulation. A reference version of the code was established and used for the
comparison of key data structures. Whilst both versions were run on the same computer, it
would have been possible to execute them on different networked systems.

Figure 7 shows the basic computational structure of the program at the outer level. After
initialising the key data structures the program enters a loop in which the concentrations of
each of the chemical species are calculated at discrete time steps. The program works on
sections of the concentration vector (c) corresponding to each column of the 3 dimensional
space. Once the new concentrations have been computed horizontal transport is performed
in 2 directions. The program uses a set of hourly wind vector values a number of times
before reading in a new set of vectors. These operations are mostly performed in the source
file airshed. F.

The assertions shown in figure 8 were used to determine the point at which the concentra·
tion vector (c) became corrupt. As discussed earlier, the assertions were placed at strategic
places in the code to try and locate where the cvector became corrupt. These assertions
detect that the vector C was incorrect at lines 2071 and 1931 but stilI correct at line 1906.
Consequently, the error must be contained in the routine COLLOOP.

[ru~IUt't rnIlcd.F
I'R(XIR \\.
\ltc"lllll

DO j'lIl(01 \1 ~ I . •.

04 ~scrtiol1 (I) CO RRE T
(. \11 (OJ I OOP!. (.

I Perl"orm j-IHO' "'1 1
<h<muIl)

~ WI.,Ih houri)'
\:llUl.."'I: ror ~,CrliOIl (2) 1:\ ORREn'
",ocI

I
\~IOr31

per-rorm

A,>crlion (~) I:"CORRECT

./'
U""WI 1'\1>

Figure 7. Overall structure of code plus source in Airshed. F.

assert old: :C.airshed.F:1906

assert old: :C.airshed.F:1931

assert old: :C.airshed.F:207l

Figure 8. Assertions relating to Airshed. F.

new: :C.airshed.F:1906

new: :C.airshed.F:1931

new::C.airshed.F:2071

Assertion(l)

Assertion(2)

Assertion(3)

199

www.manaraa.com

384 ABRAMSON AND SOSIC

Figure 9 shows the structure and source of the routine COL LOOP. The appropriate cells
from C are copied to a temporary concentration vector called CNT. The new concentrations
for the species are calculated by solving the ordinary differential equations which govern
the rates of production of each chemical species. Then the concentrations are adjusted to
take account of vertical mixing in the column. These two operations are mostly performed
in colloop . F. The assertions shown in figure IO were used to conclude that the values
in CNT were correct at line 305 and incorrect at line 321. Consequently, the error must be
contained in the routine INTEGR2 .

Figure 11 shows the structure and code of the routine INTEGR2 , which performs a
numeric integration. This makes use of a number of working vectors (such as c3). Figure 12
shows the assertions related to INTEGR2 . These assertions determine that C3 was incorrect
at 711 and 595, but the switch variable IS was correct at line 587. From the information
gathered by these assertions the error was found at line 587 of numer ic s . F as shown in
figure 13.

Suueture

ORRECT

~ ert ion (2) J CORRECT

Figure 9. Structure and code of COLLOOP in Colloop . F.

assert old : : CNTacolloop . F:30S; new: : CNTecolloop.F:30S Assertion(!)

assert o l d : : CNTecolloop . F: 321 new: :CNTacolloop.F : 321 Assertion(2)

Figure 10. Assertions relating to Colloop . F.

~·,",s""n"'m (I) CORRECT

Figure 11. Structure and code of INTEGR2 in Numerics . F.

200

www.manaraa.com

A DEBUGGING AND 1ESTING TOOL

assert old: :IS.numerics.F:587 = new: : ISenumerics.F: 587 Assertion(l)

assert old: :C3.numerics.F:595 = new: :C3enumerics.F:595 Assertion(2)

assert old: :C3.numerics.F:711 = new: :C3enumerics.F:711 Assertion(3)

Figure 12. Assertions relating to Numerics. F.

IF (IS (I) .GT.O) GO TO 70 IF (IS (I) .LT.O) GO TO 70

Correct Incorrect

Figure 13. Correct and incorrect source in numerics. F.

385

This error caused only some of the array elements to be incorrect, and would have been
extremely difficult to trace using a conventional debugger. The difference visualisations
allowed the error to be detected very quickly using a simple search in combination with the
data flow in the code. One of the main attractions of GUARD was that it was not necessary
to alter the code during the debugging phase, and thus new assertions could be developed
and refined without the need to recompile the code.

5.2. Case study 2-Finding errors across platforms

In this case study GUARD was used to locate the source of a divergence in the pollution
code described in the previous section, which occurred after it had been ported from a DEC
Alpha workstation to a SUN Sparc Station 5. These two platforms (and their associated
operating systems and compilers) differ in a number of important respects. They use different
architectures and byte ordering, different default floating point options and different sizes
of integers and addresses. SinCi:e the source code for the pollution model was identical on
the two machines, the divergence could have been due to a variation in any of the hardware,
operating system, compilers or run time libraries. Location of this type of problem is a
daunting task.

The exact nature of the error can be seen in the error surface plotted in figure 14. This
shows where the contents of the concentration array exceeds a 10% relative error tolerance
value in the three dimensions of the model. The error appears to be distributed vertically
through the atmosphere, which would suggest that the vertical advection code in the model
actually transports the error vertically throughout the atmosphere. Also, the error is not
present in half of the data structure (the front region as displayed in figure 14), which
happens to correspond to a region of space which is above water rather than land. This
would suggest that the error is only propagated by some of the physics code relating to
pollution transport above land. Finally, the random nature of the error surface suggests that
the fault was not caused by a simple array indexing error. More importantly, by viewing
the progress of the error surface after each time step of the program, the error can be seen
to grow after each iteration of the algorithm. This suggests that the original source of error
may be actually be very small, and that it is then magnified by the subsequent computations.

201

www.manaraa.com

386 ABRAMSON AND SOSIC

Figure 14. Error surface in pollution model after 60 time steps.

The same technique of divide-and-conquer was used as on the last study. The program
was divided a number of times and the key data structures were examined. By using the
dataflow of the code it was possible to track a divergence down to a call to the library
function EXP. GUARD showed that EXP was returning a result which differed only in the
bottom but of the mantissa for some values of operand. However, the error observed after
a complete simulation was in the order of 40%. Accordingly, it was not clear that this
final error was a result of the small discrepancy detected by GUARD. In order to prove
the connection, we used the force option discussed in Section 3.10. This option makes it
possible to instruct GUARD to force the two programs to use the same concentration array
contents whenever a divergence is detected, by copying the data from one program to the
other. After performing this operation, the programs produced identical output down to
the last binary digit after a complete simulation. Thus, we were able to conclude that the
error observed after a complete simulation was caused by an accumulation of very small
errors, which happened to be introduced by a different algorithm for EXP. GUARD was
able to highlight a much more serious problem with the code, that it was exhibiting chaotic
behaviour in the light of very small errors.

This experiment highlights the power of being able to detect differences, and then to
force the two programs to use the same data, and continue execution. Without this feature
it would have been necessary to write an EXP function which behaved the same on the two
systems, and debugging would have taken much longer. GUARD was particularly valuable
in this context because it was possible to execute the two programs on the hardware on
which the error could be exhibited, and the underlying differences in the platforms could
be ignored by the user.

5.3. Case study 3-Finding multiple errors

In the previous two case studies the program being debugged was almost identical to the
reference version. In this case study we used GUARD to track a divergence in a large weather
model, which was rewritten so that it could be run on a parallel supercomputer. Unlike

202

www.manaraa.com

A DEBUGGING AND lESTING TOOL 387

the previous two examples, this model, MPMM (Foster and Michalakes, 1993; Michalakes
et aI., 1994), required substantial changes in order to take advantage of the underlying
hardware. The original version, MM5 (Anthes, 1986; Grell et aI., 1994), was written
for sequential vector supercomputers. MPMM had changes in some of the underlying
mathematical methods which were better suited to parallel execution. Also, some of the
inner-loops in MM5 were promoted to outer loops in MPMM, which appears as a significant
change to the source. Further, the order of the indexes in the arrays ofMPMM were reversed
to improve the performance of the program. In spite of the differences, MM5 and MPMM
are supposed to compute the same output. However, one ofthe output variables ofMPMM,
the air temperature, was seen to drift from the reference code over some number of time
steps. Figure 15 shows an iso-surface of error above 0.1 % between the temperature reported
by the two models after 45 times steps.

Figure 15 yields a great deal of information about the source of the underlying error.
One region of error can be seen (marked in the oval region) in the bottom of the three
dimensional space, which corresponds to the lower levels of the atmosphere. Similarly,
another marked region can be seen in the upper levels of the atmosphere. Because of the
underlying numerical scheme used to compute these quantities, it is impossible for both
errors to be caused by the same fault, and thus they must be generated by two independent
causes. After some further investigation it was discovered that the top error surface was
due to differences in the radiation code of the two models, and the bottom region related to
differences in the planetary boundary layer physics.

Armed with the approximate location of the errors, it was possible to construct a number
of assertions which refined the region of error as in the previous studies. This investigation
showed that the two models were inconsistent in two separate pieces of code. In one case,
a source modification that was applied to MM5 has not be applied to MPMM. In the other
case, MPMM was computing one of the quantities using a different numeric scheme, one

o

O~

Ol

o
N
o

LN
o

Figure 15. Multiple errors in global circulation model.

CJ1
o

203

www.manaraa.com

388 ABRAMSON AND SOSIC

which was better suited for parallel execution. Whilst the scheme used in MPMM was
numerically correct it still generated slightly different results to the one used in MM5.

This case study highlights a number of interesting aspects of GUARD. First, visualising
the error surface can yield very important information about the nature of the underlying
error and its locations. Second, when multiple independent errors are present, the visual
isation is necessary to determine whether the assertions have passed or failed, rather than
a simple error metric. Third, the two programs can have quite different internal structure,
and it is still possible to compare key data structures. The case study is discussed in more
detail in (Abramson et aI., 1995).

6. Conclusions

In this paper we have described a new tool which supports the debugging and testing of
programs developed with evolutionary software engineering techniques. The tool makes use
of previous versions of a program because it allows comparison of data structures between
new and old versions. Since it operates in a distributed heterogenous computing environment
it is ideal for use in program porting because the original implementation can act as a
reference site. Through a number of case studies, we have illustrated the power of the system.

GUARD is also useful for automatically testing new versions of programs against existing
ones. The declarative assertion makes it possible to specify a number of assertions about key
data structures before any changes are made to the code, and the program can be executed
under the control of the debugger to verify that these assertions are met. More details about
the implementation of GUARD can be found elsewhere (Sosic and Abramson; Abramson,
Sosic, and Watson).

GUARD has been ported successfully to a range of sequential platforms, namely SUN,
Next, DEC Alpha, IBM RS6000 and Silicon Graphics machines. This is a substantial
achievement because each of these machines use different computer architectures and sup
port debugger software in different ways. Further, because GUARD can compare data
between systems it is necessary to convert exact data formats between systems automati
cally. In one of our case studes we illustrated the utility of this mode of opertion for finding
subtle differences in system software.

Current research involves expanding GUARD to support the testing of parallel programs,
supporting more data types and increasing the range of data structure visualisations which
are possible. We are currently building a parallel version which can control the multiple
processes of a parallel application. This has required us to redesign the logic used in the
debugger for evaluating assertions, and this is discussed in another paper (Abramson et aI.).
The current version of GUARD interfaces with external visualisation systems by writing
the data to files, which must then be processed by a separate data extraction program before
the data can be visualised. It should be possible to define a higher level interchange format
for this file which makes the process of setting up new visualisations easier for the user,
and this is worthy of further consideration.

All of the functionality which has been described as part of GUARD could be intergrated
into existing debugger software. The key requirement is that the debugger implements a
client-server architecture so that it can control programs on more than one computer system.

204

www.manaraa.com

A DEBUGGING AND 1ESTING mOL 389

This approach would allow the technology inherent in GUARD to be used as part of a much
wider CASE environment, providing software developers with a powerful debugging and
testing system. The authors are currently actively pursuing this approach with a number of
computing vendors.

Acknowledgments

This work has been sponsored by the Australian Research Council. The authors wish to
acknowledge the work of Lisa Bell, who has performed most of the programming necessary
to implement GUARD. Thanks go to Simon Wail from IBM and Professor Geoff Dromey
for proof reading a draft of this paper, and to Ian Foster and John Michalakes from Argonne
National Laboratories for their work in applying GUARD to some real world scientific
codes. Thanks also go to the CASE-95 program committee and the anonymous referees
for their helpful comments.

Notes

1. Patent Pending.
2. The current limit is set to that the process always blocks after its breakpoint has been encountered. This appears

to be satisfactory for many cases.

References

Abramson, D., Foster, I., Michalakes, J., and Sosic, R 1995. Relative debugging and its application to the
development of large numerical models. IEEE Supercomputing, San Diego.

Abramson, D.A., Dix, M., and Whiting, P. 1991. A study of the shallow water equations on various parallel
architectures. 14th Australian Computer Science Conference, 6:1-12, Sydney.

Abramson, D.A. and Sosic, R. 1995. A debugging tool for software evolution. CASE-95, 7th International Work
shop on Computer-Aided Software Engineering, Toronto, Ontario, Canada, pp 206-214. Also appeared in
Proceedings of 2nd Working Conference on Reverse Engineering, Toronto, Ontario, Canada.

Abramson, D.A., Sosic, R, and Watson, G. Implementation techniques for a parallel relative debugger, to appear,
Intematinal Conference on Parallel Architectures and Compilation Techniques-PACT'96, October 20-23,
1996, Boston, Massachusetts, USA.

Adams, E. and Muchnick, S. 1986. Dbxtool: A window-based symbolic debugger for Sun workstations. Software
Practice & Experience, 16(7):653-669.

Anthes, R 1986. 1986 summary of workshop on the NCAR community climate / Forecast models. Bull. Amer.
Meteor. Soc., 67:194-198.

Cheng, D. and Hood, R 1994. A portable debugger for parallel and distributed programs. Proceedings of Super
computing 94, Washington, DC, pp. 723-732.

Foster,1. and Michalakes, J. 1993. MPMM: A massively parallel mesoscale model. In Parallel Supercomputing in
Atmospheric Science, Geered-R Hoffmann and Tuomo Kauranne (Eds.), pp. 354-363. World Scientific, River
Edge, NJ 07661.

Galbreath, N., Gropp, w., and Levine, D. 1993. Applications-driven parallel 110. Proceedings Supercomputing-93,
Portland, Oregon, pp. 462-471,IEEE.

Grell, G., Dudhia, J., and Stauffer, D. 1994. A description of the fifth-generation penn statelNCAR mesoscale
model (MMS). Technical Report NCARlTN-398+STR, National Center for Atmospheric Research, Boulder,
Colorado.

Linton, M. 1990. The evolution of Dbx. Proceedings of the Summer 1990, USENIX Conference, pp. 211-220.

205

www.manaraa.com

390 ABRAMSON AND SOSIC

McRae, GJ., Russell, A.G., and Harley, R.A. 1992. CIT photochemical airshed model-Users manual. Carnegie
Mellon University, Pittsburgh, PA and California Institute ofTechnology, Pasadena, CA.

Michalakes, J., Canfield, T., Nanjundiah, R., Hammond, S., and Grell, G. Parallel implementation, validation, and
performance of MM5. In Parallel Supercomputing in Atmospheric Science, World Scientific, River Edge, NJ
07661.

Moher, T. 1988. PROVIDE: A process visualization and debugging environment. IEEE Transactions on Software
Engineering, 14(6):849-857.

Olsson, R., Crawford, R., and Ho, W. 1991. A dataflow approach to event-based debugging. Software-Practice
and Experience, 21(2):209-229.

Ramsey, N. and Hanson, D. 1992. A retargetable debugger. Proceedings of SIGPLAN'92 Conference on Program
ming Language Design and Implementation, pp. 22-31, ACM.

Satterthwaite, E. 1972. Debugging tools for high level languages. Software-Practice and Experience, 2(3):197-

217.
Sosic, R. and Abramson, D.A. GUARD: A Relative Debugger, to appear, Software-Practice Experience.
Sosic, R. 1995. Design and Implementation of Dynascope, a Directing Platform for Compiled Programs. Com-

puting Systems, Spring, 8(2):107-134.
Sosic, R.A. 1995. Procedural Interfacefor Program Directing, Software-Practice and Experience, 25(7):767-787.
Stallman, R. M. and Pesch, R. H. 1994. Debugging with GDB. Free Software Foundation, Boston.
Stevens, w.R. 1990. Unix Networking Programming. Englewood Cliffs, NJ: Prentice-Hall.
Sun Microsystems, 1990. Debugging Tools Manual. Sun Release 4.1.

206

www.manaraa.com

Automated Software Engineering 3, 391-393 (1996)
© 1996 Kluwer Academic Publishers. Manufactured in The Netherlands.

Desert Island Column

KEVIN RYAN kevin.ryan@ul.ie
College of Informatics & Electronics, University of Limerick, Ireland

The requirement remained deceptively simple. "Imagine you are marooned on a desert
island, with only a handful of books and papers related to automated software engineering
at your disposal. Which books or papers should those be? They may be seminal, thought
provoking or simply a pleasure to read".

Of course my first reaction was "why would anyone in their right mind want any software
engineering books or papers at all under those circumstances?" You would bring a few
survival manuals and possibly some classical literature but software books, research papers,
theses-definitely not. But that is to miss the spirit of the challenge. Assuming the lower
levels of Maslow's hierarchy of needs have all been catered for, the spotlight then falls
on the word "related". What is or isn't related to "automated software engineering"-or
indeed to anything at all? Why would you expect to do after your enforced sabbatical? So
paraphrasing furiously-I restate the requirement as: "Supposing you were to be marooned
on a comfortable island for a year or more, in the full knowledge that at the end of that
period you would return to work on an automated software engineering project, what would
you want to read in preparation?".

My choice of three books and two papers is a mixture of the predictable and the eclectic.

Douglas Hofstadter's Gvdel, Escher, Bach (Hofstadter, 1979);
Henry Petroski's To Engineer is Human (Petroski, 1985);
Edward Tufte's The Visual Display of Quantitative Information (Tufte, 1983);
Cavalli-Sforza's Genes, Peoples and Languages (Cavalli-Sforza, 1991);
Joe Wiezenbaum's The Myths of Artificial Intelligence (Weizenbaum, 1983).

My reasons for choosing them may need some explaining.
The arguments for a classical education are frequently misunderstood. Some people

imagine that we should reflect on past civilisations because they have all the answers to
life's deepest questions or that, just as English has sprung from Latin, so our civilisation
owes its existence to the Greeks and the Romans. But that is to miss the point. The ancients
did not, by any means, have all the right answers. What they had was all the right questions.
Every ancient civilisation faced the same human predicament. Questions of right and wrong,
purpose and intent, truth and beauty are the stuff of every philosophy. In reflecting on how
I might approach a new research undertaking I would like to draw on those questions and
establish a framework of values that give perspective to my work and help keep me on the
right track.

The first value is the aesthetic. How often have you heard dismissive comments such as
"It's just equivalent to First Order Logic" or "The Human Computer Interface can be added

www.manaraa.com

392 RYAN

later" which betray a lack of concern for the usability, the human-centredness, the sheer
beauty of a research artifact? Presentation is not everything but, when it comes to providing
useful tools, it is very important, and quick and dirty often hides muddled and misguided.
That is why I would want Tufte along. This is a book beyond price. A comprehensive
survey that will convince even the least aesthetic among us of the genius that is involved
in describing complexity with clarity, accuracy and beauty. Minard's shocking graphic
of Napoleon's retreat from Moscow is a classic and, according to Tufte, it may be "the
best statistical graphic ever drawn". He also nominates, on page 118, a 'worst graphic'
but, overall, the book is crammed with minor masterpieces and gems of simple wisdom.
Absorb this book and thereafter timetables, graphs and charts will never look the same
to you again, and you will demand that your own work exhibits clarity, economy and the
indefinable quality called style.

Maybe we have to write too many research proposals or personal biographies but humility
can be in short supply among software researchers. Petroski's book-subtitled "The Role of
Failure in Successful Design"-is a calm but candid assessment of some classic disasters in
civil engineering design. He argues that the engineer must anticipate failure, do everything
possible to avert it and then, when failure inevitably occurs, have the courage and the
humility to learn as much as possible from the post mortem. As for computers in design,
he considers them "both a blessing and a curse". A blessing because they take away the
tedium of calculation; a curse because they can so distance people from physical reality
that they lose the ability to sense when an answer is "unreasonable". More pointed by far is
Weizenbaum's withering critique of pride and delusion in artificial intelligence research. He
parses and dissects, to great effect, quotes old and new. Prospective 'knowledge engineers'
would do well to remember Simon and Newell's 1958 prediction that "within the visible
future-the range of problems [computers] can handle will be coextensive with the range
to which the human mind has been applied". Of course some people are long-sighted but
surely we've reached the visible future by now. Feigenbaum and McCorduck are quoted as
asserting that "no plausible claim to intellectuality can possibly be made in the near future
without an intimate dependence upon this new instrument" [the computer] and that "the
burden of producing the future knowledge of the world will be transferred from human
heads to machine artifacts", while Moto-oka of the Fifth Generation project believed that
"through the intellectualization of these advanced computers, totally new applied fields
will be developed, social productivity will be developed, and distortions in values will be
eliminated". Weizenbaum found the last idea particularly reprehensible. But it is not so
much that the predictions of 1958, 1983 or 1996 were and are wrong, since that is the nature
of predictions. It is that they betray the arrogance of an isolated elite. Who are we to assume
that what we do supercedes all previous human endeavor? To imagine that the big questions
of the ancient philosophers have somehow been solved by our superfast calculations? Some
readings on humility are definitely in order.

Integration is the last of my basic values for researchers. Hofstadter's book was a landmark
fusion of scientific method, whimsical speculation and subtle humour. Weaving his "eternal
golden braid" out of the recurring patterns of music, biology and computing, he showed
the limitations of logic and the layered nature of all meaning. Most computer scientists
have bought this book. Many may have even read it, but everyone can continue to enjoy

208

www.manaraa.com

DESERT ISLAND COLUMN 393

dipping into it-even without the benefits of a tropical paradise. And it is to the tropics
that my last, and most fascinating, author traces our origins. Cavalli-Sforza's short paper
in the November issue of Scientific American literally took my breath away. It tells how
the genetic mapping of the human family tree can be shown to correspond closely with
the postulated tree of human languages. He traces the movement of our earliest ancestors
from eastern Africa to all corners of the globe and, in the process, solves many linguistic
conundrums and raises a few more. Almost audibly the chunks of disparate knowledge click
into place and the whole picture, the story of humanity'S spread, is laid out with compelling
logic and no little beauty. The theory is not uncontested. Perhaps Cavalli-Sforza will even
be proven wrong. But I will take his paper with me as a model of the scientific goal of
unearthing the simple patterns which underly observed complexity.

So there you have it. Three virtues to cultivate prior to returning to the grant-hunting,
deliverable-driven fray. Beauty, humility and integration but, if! have to choose, the greatest
of these is beauty.

References

Cavalli-Sforza and Luigi Luca. 1991. Genes, peoples and languages, Scientific American. 265(5):72-78.
Hofstadter, D. 1979. Gvde/, Escher and Bach. Basic Books.
Petroski, H. 1985. To Engineer is Human. St Martin's Press.
Tufte, E. 1983. The Visual Display of Quantitative Information. Graphics Press.
Wiezenbaum, 1. 1983. The Myths of Artijiciallntelligence. The New York Review, Reprinted in T. Forrester, (Ed.),

1985, The Information Technology Revolution, Blackwell.

209

www.manaraa.com

Table of Contents: Volume 3 (1996)

Number 112

Preface .. Lewis Johnson 5
Introduction .. Linda Wills 7
Database Reverse Engineering: From Requirements to CARE Tools
· J.-L. Hainaut, V. Englebert, J. Henrard, J.-M. Hick and D. Roland 9
Understanding Interleaved Code
· Spencer Rugaber, Kurt Stirewalt and Linda M. Wills 47
Pattern Matching for Clone and Concept Detection
· K.A. Kontogiannis, R. DeMori, E. Merlo, M. Galler and M. Bernstein 77
Extracting Architectural Features from Source Code
· David R. Harris, Alexander S. Yeh and Howard B. Reubenstein 109
Strongest Postcondition Semantics and the Formal Basis for Reverse Engineering
.. Gerald C. Gannod and Betty H. C. Cheng 139
Recent Trends and Open Issues in R«verse Engineering
· .. Linda M. Wills and James H. Cross II 165
Desert Island Column .. John Dobson 173

Number 3/4

Introduction Hausi A. Muller, Ronald J. Norman and Jacob Slonim 189
Automating the Software Inspection Process
Fraser MacDonald, James Miller, Andrew Brooks, Marc Roper and Murray Wood 193
Design by Framework Completion .. Dipayan Gangopadhyay and Subrata Mitra 219
Building an Organization-Specific Infrastructure to Support CASE Tools
· ... Scott Henninger 239
A CASE Tool for Software Architecture Design
· .. Keng Ng, Jeff Kramer and Jeff Magee 261
A Knowledge-Based Software Engineering Environment for Reusable Software
Requirements and Architectures
H. Gomaa, L. Kerschberg, V. Sugumaran, C. Bosch, I. Tavakoli and L. O'Hara 285
Enveloping Sophisticated Tools into Process-Centered Environments
· .. Giuseppe Valetto and Gail E. Kaiser 309
Use of Methods and CASE-Tools in Norway: Results from a Survey
· .. John Krogstie 347
A Debugging and Testing Tool for Supporting Software Evolution
· ... D. Abramson and R. Sosic 369
Desert Island Column : Kevin Ryan 391

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

